The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L−1 of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L−1 of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L−1 of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L−1 of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.
Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391–396.
Asztemborska, M., Steborowski, R., Kowalska, J., Bystrzejewska-Piotrowska, G. (2015) Accumulation of aluminium by plants exposed to nano and microsized particles of Al2O3. Int. J. Environ. Res. 141, 109–116.
Brennan, T., Frenkel, C. (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol. 59, 411–416.
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., Lux, A. (2007) Zinc in plants. N. Phytol. 173, 677–702.
Bystrzejewska-Piotrowska, G., Golimowski, J., Urban, P. L. (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29, 2587–259.
Canõ-Delgado, A., Penfield, S., Smith, C., Catley, M., Bevan, M. (2003) Reduced cellulose synthesis invokes lignifications and defense responses in Arabidopsis thaliana. Plant J. 34, 351–362.
Córdoba-Pedregosa, M. C., Córdoba, F., Villalba, J. M., González-Reyes, J. M. (2005) Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. J. Exp. Bot. 56, 685–694.
Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., Boyanov, M. I., Anderson, A. J. (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 14, 1125–1129.
Finger-Teixeira, A., Ferrarese, M. L. L., Soares, A. R., daSilva, D., Ferrarese-Filho, O. (2010) Cadmium-induced lignifications restricts soybean root growth. Ecotoxicol. Environ. Saf. 73, 1959–1964.
Halliwell, B., Gutteridge, J. M. C. (1999) The chemistry of free radicals and related ‘reactive species’. Free Radic. Biol. Med. 3, 220.
Handy, R. D., Owen, R., Valsami-Jones, E. (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicol. 17, 315–325.
Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophy. 125, 189–198.
Kolbert, Z. S., Peto, A., Lehotai, N., Feigl, G., Ördög, A., Erdei, L. (2012) In vivo and in vitro studies on fluorophore-specificity. Acta Biol. Szeged 56, 37–41.
Kwasniewskia, M., Chwialkowska, K., Kwasniewska, J., Kusak, J., Siwinski, K., Szarejko, I. (2013) Accumulation of peroxidase related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J. Plant Physiol. 170,185–195.
Kwon, Y. I., Abe, K., Endo, M., Osakabe, K., Ohtsuki, N., Nishizawa-Yoko, A., Tagiri, A., Saika, H., Toki, S. (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol. 13, 62–75.
Li, X. N., Ma, H. Z., Jia, P. X., Wang, J., Jia, L. Y., Zhang, T. G., Yang, Y. L., Chen, H. J., Wei, X. (2012) Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol. Environ. Saf. 86, 47–53.
Lin, C. C., Kao, C. H. (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaClinhibited root growth of rice seedlings. Plant Soil 230, 135–143.
Lin, D., Xing, B. (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585.
Love, S. A., Maurer-Jones, M. A., Thompson, J. W., Lin, Y. S., Haynes, C. L. (2012) Assessing nanoparticle toxicity. Annu. Rev. Anal. Chem. 5, 181–205.
Lybeer, B., Koch, G., VanAcker, J., Goetghebeur, P. (2006) Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann. Bot. 97, 529–539.
Ma, H., Williams, P. L., Diamond, S. A. (2013) Ecotoxicity of manufactured ZnO nanoparticles –A review. Environ. Pol. 172, 76–85.
Miralles, P., Church, T. L., Harris, A. T. (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46, 9224–9239.
Mukherjee, A., Peralta-Videa, J. R., Bandyopadhyay, S., Rico, C. M., Zhao, L., Gardea-Torresdey, J. L. (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6, 132–138.
Munzuroglu, O., Geckil, H. (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol. 43, 203–213.
Rogers, L. A., Dubos, C., Surman, C., Willment, J., Cullis, I. F., Mansfield, S. D., Campbell, M. M. (2005) Comparison of lignin deposition in three ectopic lignification mutants. New Phytol. 168, 123–140.
Ruley, A. T., Sharma, N. C., Sahi, S. V. (2004) Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiol. Biochem. 42, 899–906.
Sharma, P., Bhatt, D., Zaidi, M. G., Pardha Saradhi, P., Khanna, P. K., Arora, S. (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167, 2225–2233.
Smirnoff, N. (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125, 27–58.
Tronchet, M., Balagué, C., Kroj, T., Jouanin, L., Roby, D. (2010) Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 11, 83–92.
Truta, E. C., Gherghe, D. N., Bara, I. C. I., Vochita, G. V. (2013) Zinc induced genotoxic effects in root meristems of Barley seedlings. Not Bot. Horti. Agrobo. 41, 150–156.
Vardar, F., Ismailoglu, I., Inan, D., Ünal, M. (2011) Determination of stress responses induced by aluminum in maize (Zea mays). Acta Biol. Hung. 62, 156–170.
Watson, J. L., Fang, T., Dimkpa, C. O., Britt, D. W., McLean, J. E., Jacobson, A., Anderson, A.J. (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28, 101–112.
Song, W. Y., Choi, K. M., Kim, D. Y., Geisler, M., Park, J., Vincenzetti, V., Schellenberg, M., Kim, S. A., Lim, Y. P., Noh, E. W., Lee, Y., Martinoia, W. (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. The Plant Cell 22, 2237–2252.
Yanik, F., Vardar, F. (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut. 26, 296.