View More View Less
  • 1 University of Ondokuz mayis, Samsun, Turkey
Restricted access

In this study, Eruca sativa (Rocket) seedlings were treated with different cadmium (Cd) concentrations (0, 150, 300 and 450 μg ∙ g−1). The effects of Cd on lipid peroxidation, enzymatic (APx, CAT, GPX, SOD) and non-enzymatic antioxidants (total ascorbate, dehydroascorbate, ascorbate, non-protein thiol), fresh and dry masses, water content were determined. Also, Cd content of the leaves and the roots were analysed. The highest cadmium accumulation of leaves was at 450 μg ∙ g−1 Cd treatment and the accumulation was 2.62 times greater than those in the roots. The translocation factor was 3.89 at 300 μg ∙ g−1 Cd treatment. Cd treatments caused decreases of fresh, dry mass and water content of leaves and roots. Malondialdehyde content, which is an index of lipid peroxidation, was increased in proportion with the increase in Cd. While there was not change in the activity of GPX according to control, a decrease in activities of SOD, CAT and APX were observed with the increase of cadmium concentration. Although a significant increase in the amounts of non-protein thiol groups and proline were observed in 450 μg ∙ g−1 Cd treated plants, Cd did not lead to a significant change in AsA, DHA and total AsA contents. According to the results of the research, E. sativa may be a Cd hyperaccumulator plant and we suggest that the plant may be a candidate plant for remediation of Cd-contaminated soil.

  • 1.

    Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121126.

  • 2.

    Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C., Roberts, J. D. (1986) Chemical analysis. In: Chapman, S. B. (ed.) Methods in Plant Ecology. Blackwell Science, Oxford, pp. 411466.

    • Search Google Scholar
    • Export Citation
  • 3.

    Anjum, N. A., Ahamd, I., Mohmood, I., Pacheco, M., Duarte, A. C., Pereira, E., Umar, S., Ahmad, A., Khan, N. A., Iqbal, M., Prasad, M. N. V. (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids –a review. Environ. Exp. Bot. 75, 307324.

    • Search Google Scholar
    • Export Citation
  • 4.

    Apel, K., Hirt, H. (2004) Reactive oxygen species: metabolism oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373399.

    • Search Google Scholar
    • Export Citation
  • 5.

    Benavides, M. P., Gallego, S. M., Tomaro, M. L. (2005) Cadmium toxicity in plants. Braz. J. Plant Physiol. 17, 2134.

  • 6.

    Cakmak, I., Marschner, H. (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol. 98, 12221227.

    • Search Google Scholar
    • Export Citation
  • 7.

    Chaoui, A., Mazhoudi, S., Ghorbal, M. H., El Ferjani, E. (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127, 139147.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chen, Y. X., He, Y. F., Luo, Y. M., Yu, Y. L., Lin, Q., Wong, M. H. (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50, 789793.

    • Search Google Scholar
    • Export Citation
  • 9.

    Claussen, W. (2005) Proline as a measure of stress in tomato plants. Plant Sci. 168, 241248.

  • 10.

    Clemens, S. (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 88, 17071719.

  • 11.

    Cosio, C., Martinoia, E., Keller, C. (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134, 716725.

    • Search Google Scholar
    • Export Citation
  • 12.

    Demchenko, N. P., Kalimova, I. B., Demchenko, K. N. (2005) Effect of nickel on growth, proliferation, and differentiation of root cells in Triticum aestivum seedlings. Russian J. Plant Physiol. 52, 220228.

    • Search Google Scholar
    • Export Citation
  • 13.

    Demir, E., Ozdener, Y. (2015) The effects of cadmium on the antioxidative responses of leaves of Brassica oleracea var. acephala. Fresenius Env. Bull. 24, 47294737.

    • Search Google Scholar
    • Export Citation
  • 14.

    Dhir, B., Sharmila, P., Saradhi, P. P. (2004) Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat. Toxicol. 66, 141147.

    • Search Google Scholar
    • Export Citation
  • 15.

    Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 7077.

  • 16.

    Gill, S. S., Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909930.

    • Search Google Scholar
    • Export Citation
  • 17.

    Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., Tuteja, N. (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol. Biochem. 70, 204212.

    • Search Google Scholar
    • Export Citation
  • 18.

    Gupta, M., Cuypers, A., Vangrosveld, J., Clisters, H. (1999) Copper affect the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol. Plant. 106, 262267.

    • Search Google Scholar
    • Export Citation
  • 19.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189198.

    • Search Google Scholar
    • Export Citation
  • 20.

    Lee, S., Petros, D., Moon, J. S., Ko, T. S., Goldsbrough, P. B., Korban, S. S. (2003) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol. Biochem. 41, 903910.

    • Search Google Scholar
    • Export Citation
  • 21.

    Leon, A. M., Palma, J. M., Corpas, F. J., Gomez, M., Romero-Puertas, M. C., Chatterjee, D., Mateos, R. M., del Rio, L. A., Sandalio, L.M. (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Phys. Biochem. 40, 813820.

    • Search Google Scholar
    • Export Citation
  • 22.

    Madamanchi, N. R., Donahue, J., Cramer, C. L., Alscher, R. G., Pedersen, K. (1984) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short term exposure to sulphur dioxide. Plant Mol. Biol. 26, 95103.

    • Search Google Scholar
    • Export Citation
  • 23.

    Madhava Rao, K. V., Srestry, T. V. S. (2000) Antioxidative parameters in the seedlings of pigeon pea (Cacanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157, 113128.

    • Search Google Scholar
    • Export Citation
  • 24.

    Masarovicova, E., Kralova, K., Kummerova, M. (2010) Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiol. Plant. 32, 823829.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mishra, S., Srivastava, S., Tripathia, R. D., Govindarajan, R., Kuriakose, S. V., Prasad, M. N. V. (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol. Biochem. 44, 2537.

    • Search Google Scholar
    • Export Citation
  • 26.

    Munzuroglu, O., Geckil, H. (2002) Effect of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contan. Toxicol. 43, 203213.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867880.

    • Search Google Scholar
    • Export Citation
  • 28.

    Okamura, M. (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin. Chim. Acta 103, 259.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ozdener, Y., Aydin, B. K. (2010) The effect of zinc on the growth and physiological and biochemical parameters in seedlings of Eruca sativa (L.) (Rocket). Acta Physiol. Plant. 32, 469476.

    • Search Google Scholar
    • Export Citation
  • 30.

    Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E., Parsons, J. G. (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull. Environ. Contam. Toxicol. 66, 727734.

    • Search Google Scholar
    • Export Citation
  • 31.

    Polle, A., Otter, T., Siefert, F. (1994) Apoplastic peroxidases and lignification in needless of Norvey spruce (Picea abies L.). Plant Physiol. 106, 5360.

    • Search Google Scholar
    • Export Citation
  • 32.

    Qiu, R. L., Zhao, X., Tang, Y. T., Yu, F. M., Hu, P. J. (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74, 612.

    • Search Google Scholar
    • Export Citation
  • 33.

    Rai, V., Vajpayee, P., Singh, S. N., Mehrotra, S. (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuflorum L. Plant Sci. 167, 11591169.

    • Search Google Scholar
    • Export Citation
  • 34.

    Rout, G. R., Das, P. (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23, 311.

  • 35.

    Sandalio, L. M., Dalurzo, H. C., Gómez, M., Romero-Puertas, M. C., dEl Rio, L. A. (2001) Cadmiuminduced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52, 21152126.

    • Search Google Scholar
    • Export Citation
  • 36.

    Tu, C., Ma, L. Q. (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J. Environ. Qual. 31, 641647.

    • Search Google Scholar
    • Export Citation
  • 37.

    Xiong, Z. T. (1998) Lead uptake and effect on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull. Environ. Contam. Toxicol. 60, 285291.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zwolak, I., Zaporowska, H. (2009) Preliminary studies on the effect of zinc and selenium on vanadium-induced cytotoxicity in vitro. Acta Biol. Hung. 60, 5567.

    • Search Google Scholar
    • Export Citation