View More View Less
  • 1 Sinop University, Sinop, Turkey
Restricted access

In this paper, we describe the alleviated effects of alpha-tocopherol (α-T) on oxidative damage and its possible role as a signal transmitter in plants during salt stress. The results show that exogenously applied α-T under salt stress increased root length and weight, but reduced hydrogen peroxide (H2O2), superoxide anion radical (O2.—) and malondialdehyde (MDA) content in soybean roots. The proline content was reduced by α-T treatment. Interestingly, endogenous auxin (IAA) level was significantly increased after α-T application as compared to salt stress alone. Moreover, α-T reduced significantly superoxide dismutase (SOD) enzyme and isoenzyme activity but upregulated peroxidase (POX) 2, 3 and glutathione-s-transferase (GST) 1, 3 isoenzyme expression. However, ascorbate peroxidase (APX) enzyme activity was not affected at all. Consequently, the results show that α-T serves as a signal molecule under salinity from leaves to roots by increasing remarkably endogenous IAA levels and increasing partially antioxidant activity in roots.

  • 1.

    Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., Sharma, S. (2010) Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30, 161175.

    • Search Google Scholar
    • Export Citation
  • 2.

    Arango, Y., Heise, K. P. (1998) Localization of alpha-tocopherol synthesis in chromoplast envelope membranes of Capsicum annuum L. fruits. J. Exp. Bot. 49, 12591262.

    • Search Google Scholar
    • Export Citation
  • 3.

    Asada, K. (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601639.

    • Search Google Scholar
    • Export Citation
  • 4.

    Beauchamp, C., Fridovich, I. (1973) Isozymes of superoxide dismutase from wheat germ. Biochimica et Biophysica Acta 317, 50.

  • 5.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochem. 72, 248254.

    • Search Google Scholar
    • Export Citation
  • 6.

    Cela, J., Chang, C., Munne-Bosh, S. (2011) Accumulation of ?-rather than a-tocopherol alters ethylene signaling gene expression in the vte4 mutant of Arabidopsis thaliana. Plant Cell Physiol. 52, 13891400.

    • Search Google Scholar
    • Export Citation
  • 7.

    Cha, J. Y., Kim, W. Y., Kang, S. B., Kim. J. I., Baek, D., Jung, I. J., Kim, M. R., Li, N., Kim, H. J., Nakajima, M., Asami, T., Sabir, J. S., Park, H. C., Lee, S. Y., Bohnert, H. J., Bressan, R. A., Pardo, J. M., Yun, D. J. (2015) A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nature Communications. doi:10.1038/ncomms9041.

  • 8.

    Claussen, W. (2005) Proline as a measure of stress in tomato plants. Plant Sci. 168, 241248.

  • 9.

    De Rosa Rosa, G., Duncan, D. S., Keen, C. L., Hurley, L. S. (1979) Evaluation of negative staining technique for determination of CN-insensitive superoxide dismutase activity. Biochim. et Biophysica Acta (BBA) Enzymol. 566, 3239.

    • Search Google Scholar
    • Export Citation
  • 10.

    Du, H., Liu, H., Xiong, L. (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers Plant Sci. 4, 397.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ellouzi, H., Hamed, K. B., Cela, J., Müller, M., Abdelly, C., Munne-Bosch, S. (2013) Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system. Plant Signal. Behaviour 8, 2.

    • Search Google Scholar
    • Export Citation
  • 12.

    Flores, M. I. A., Romero-Gonzalez, R., Garrido-Frenich, A., Vidal, J. L. M. (2011) QuEChERS-based extraction procedure for multifamily analysis of phytohormones in vegetables by UHPLC-MS/MS. J. Sep. Sci. 34, 15171524.

    • Search Google Scholar
    • Export Citation
  • 13.

    Gapinska, M., Sklodowska, M., Gabara, B. (2008) Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol. Plant. 30, 1118.

    • Search Google Scholar
    • Export Citation
  • 14.

    Gossett, D. R., Millhollon, E. P., Lucas, M. C. (1994) Antioxidant response to NaCl stress in salttolerant and salt-sensitive cultivars of cotton. Crop Sci. 34, 706714.

    • Search Google Scholar
    • Export Citation
  • 15.

    Habig, W. H., Pabst, M. J., Jakoby, W. B. (1974) Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 71307139.

    • Search Google Scholar
    • Export Citation
  • 16.

    Halliwell, B., Gutteridge, J. M. C. (2007) Free Radical Biology and Medicine. 4. Oxford: Clarendon. pp. 1777.

  • 17.

    Havaux, M., Eymery, F., Porfirova, S., Rey, P., Doermann, P. (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17, 34513469.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hernandez, J. A., Olmos, E., Corpas, F. J., Sevilla, F., Del Rio, L. A. (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151167.

    • Search Google Scholar
    • Export Citation
  • 19.

    Herzog, V., Fahimi, H. D. (1973) A new sensitive colorimetrical assay for peroxidase, using 3,3-diaminobenzidine as hydrogendonor. Anal. Bioch. 55, 554562.

    • Search Google Scholar
    • Export Citation
  • 20.

    Jaleel, C. A., Lakshmanan, G. M. A., Gomathinayagam, M., Panneerselvam, R. (2008) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. South African J. Bot. 74, 126132.

    • Search Google Scholar
    • Export Citation
  • 21.

    Johnson, C. M., Ulrich, A. (1959) II. Analytical methods foruse in plant analysis. California Agricultural Exp. Station Bulletin 766, 3033.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kumar, S., Singh, R., Nayyar, H. (2012) a-Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J. Plant Growth Regul. 32, 307314.

    • Search Google Scholar
    • Export Citation
  • 23.

    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4, Nature 227, 680685.

  • 24.

    Lee, M., Jung, J. H., Han, D. Y., Seo, P. J., Park, W. J., Park, C. M. (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235, 923938.

    • Search Google Scholar
    • Export Citation
  • 25.

    Liu, C. M. (2015) Auxin binding protein 1 (ABP1): a matter of fact. J. Integr. Plant Biol. 57, 234235.

  • 26.

    Madhava Rao, K. V., Sresty, T. V. (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157, 113128.

    • Search Google Scholar
    • Export Citation
  • 27.

    Miret, J. A., Munne-Bosh, S. (2015) Redox signaling and stress tolerance in plants: a focus on vitamin E. Annals of the New York Academy of Sci. 1340, 2938.

    • Search Google Scholar
    • Export Citation
  • 28.

    Munne-Bosch and Falk (2004) New insights into the function of tocopherols in plants. Planta 218, 323326.

  • 29.

    Munné-Bosch, S., Peñuelas, J. (2004) Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci. 166, 11051110.

    • Search Google Scholar
    • Export Citation
  • 30.

    Naser, V., Shani, E. (2016) Auxin response under osmotic stress. Plant Mol. Biol. doi: 10.1007/s11103-016-0476-5.

  • 31.

    Nazar, R., Iqbal, N., Syeed, S., Khan, N. A. (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol. 168, 807815.

    • Search Google Scholar
    • Export Citation
  • 32.

    Noctor, G. (2006) Metabolic signaling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29, 409425.

    • Search Google Scholar
    • Export Citation
  • 33.

    Orabi, S. A., Abdelhamid, M. T. (2014) Protective role of a-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system. J. the Saudi Society of Agricultural Sci. doi: 10.1016/j.jssas.2014.09.001

    • Search Google Scholar
    • Export Citation
  • 34.

    Semida, W. M., Taha, R. S., Abdelhamid, M. T., Rady, M. M. (2014) Foliar-applied a-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. South African J. Bot. 95, 2431.

    • Search Google Scholar
    • Export Citation
  • 35.

    Shi, H., Chen, L., Ye, T., Liu, X., Ding, K., Chan, Z. (2014) Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem. 82, 209217.

    • Search Google Scholar
    • Export Citation
  • 36.

    Sobhanian, H., Razavizadeh, R., Nanjo, Y., Ehsanpaur, A. A., Jazi, R. F., Motamed, N., Komatsu, S. (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stres. Proteome Sci. 819.

    • Search Google Scholar
    • Export Citation
  • 37.

    Velikova, V., Yordanov, I., Edreva, A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci. 151, 5966.

    • Search Google Scholar
    • Export Citation
  • 38.

    Went, F. W., Thimann, K. V. (1937) Phytohormones. New York: MacMillan. 289 p.

  • 39.

    Winifred, M., Cort Thelma, S., Vicente Edward, H., Waysek Beverly Williams, D. (1983) Vitamin E content of feed stuffs determined by high-performance liquid chromatographic fluorescence. J. Agricul. Food Chem. 31, 13301333.

    • Search Google Scholar
    • Export Citation