View More View Less
  • 1 University of Debrecen, H-4032 Debrecen, Böszörményi út 138, Hungary
  • | 2 University of Debrecen, H-4032 Debrecen, Böszörményi út 138, Hungary
Restricted access

Supplement of common fertilizers with selenium (Se) for crop production will be an effective way to produce selenium-rich food and feed. The value of green pea seeds and forages as alternative protein source can be improved by using agronomic biofortification. Therefore, biological changes of green pea (Pisum sativum L.) and influences of inorganic forms of Se (sodium selenite and sodium selenate) at different concentrations on the accumulation of magnesium (Mg) and phosphorus (P) were investigated in greenhouse experiment. 3 mg kg−1 of selenite had positive effects to enhance photosynthetic attributes and decrease lipid peroxidation significantly. At the same time, Se accumulation increased in all parts of plant by increasing Se supply. Moreover, Mg and P accumulations were significantly increased at 3 mg kg−1 selenite and 1 mg kg−1 selenate treatments, respectively. By contrast higher selenite concentrations (≥30 mg kg−1) exerted toxic effects on plants. Relative chlorophyll content, actual photochemical efficiency of PSII (ФPSII) and Mg accumulation showed significant decrease while membrane lipid peroxidation increased. Thus, the present findings prove Se biofortification has positive effects on biological traits of green pea to provide it as a proper functional product.

  • 1.

    Abel, S. C., Ticconi, A. C., Delatorre, A. (2002) Phosphate sensing in higher plants. Physiol. Plant 115, 18.

  • 2.

    Acikgoz, E., Katkat. V., Omeroglu, S., Okan, B. (1985) Mineral elements and amino acid concentrations in field pea and common vetch herbages and seeds. J. Agron. Crop Sci. 55, 179185

    • Search Google Scholar
    • Export Citation
  • 3.

    Alfthan, G., Eurola, M., Ekholm, P., Venäläien, E. R., Root, T., Korkalainen, K., Hartikainen, H., Salminen, P., Hietaniemi, V., Aspila, P., Aro, A. (2015) Effect on nationwide addition of selenium to fertilizers on foods, and animals and human health: from deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 31, 142147.

    • Search Google Scholar
    • Export Citation
  • 4.

    Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplast and their functions. Plant Physiol. 14, 391396.

  • 5.

    Banuelos, G. S., Arroyo, I., Pickering, I. J., Yang, S. I., Freeman, J. L. (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator. Stanleya Pinnata. Food Chem. 166, 603608.

    • Search Google Scholar
    • Export Citation
  • 6.

    De Souza, M. P., Pilon-Smits, E. A. H., Mel Lytle, C., Hwang, S., Tai, J., Honma, T. S. U., Yeh, L., Terry, N. (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol. 117, 14871494.

    • Search Google Scholar
    • Export Citation
  • 7.

    Dworkin, B. M. (1994) Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS). Chem. Biol. Interact 91, 181186.

    • Search Google Scholar
    • Export Citation
  • 8.

    Feng, R., Wei, C., Tu, S. (2013) The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 87, 5868.

  • 9.

    Germ, M., Pongrac, P., Regvar, M., Vogel-Mikus, K., Stibilj, V., Jacimovic, R., Kreft, I. (2013) Impact of double Zn and Se biofortification of wheat plants on the element concentrations in the grain. Plant Soil Environ. 59, 316321.

    • Search Google Scholar
    • Export Citation
  • 10.

    Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., Bonierbale. M., de Haan, S., Burgos, G., Thiele, G., Liria, R. (2007) Nutritious subsistence food systems. Adv. Agron. 92, 174.

    • Search Google Scholar
    • Export Citation
  • 11.

    Hartikainen, H. (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Bio. 18, 309318.

    • Search Google Scholar
    • Export Citation
  • 12.

    Hawrylak-Nowak, B. (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 132, 259269.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hopper, J. L., Parker, D. R. (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210, 199207.

    • Search Google Scholar
    • Export Citation
  • 14.

    Iqbal, M., Hussain, I., Liaqat, H., Ashraf, M., Rasheed, R. (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol. Biochem. 94, 95103.

    • Search Google Scholar
    • Export Citation
  • 15.

    Keskinen, R., Yli-Halla, M., Hartikainen, H. (2013) Retention and uptake by plants of added selenium in peat soils. Commun. Soil Sci. Plant Anal. 44, 34653482.

    • Search Google Scholar
    • Export Citation
  • 16.

    Kovács, B., Gyori, Z., Prokisch, J., Loch, J., Dániel, P. (1996) A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Commun. Soil Sci. Plant Anal. 27, 11771198.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lee, S. H., Ahsan, N., Lee, K. W., Kim, D. H., Lee, D. G., Kwak, S. S., Kwon, S. Y., Kim, T. H., Lee, B. H. (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 164, 16261638.

    • Search Google Scholar
    • Export Citation
  • 18.

    Li, H. F., McGrath, S. P., Zhao, F. J. (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 178, 92102.

    • Search Google Scholar
    • Export Citation
  • 19.

    Liu, K., Gu, Z. (2009) Selenium accumulation in different brown rice cultivars and its distribution infractions. J. Agric. Food Chem. 57, 695700.

    • Search Google Scholar
    • Export Citation
  • 20.

    Liu, K., Zhao, K., Duan, B., Hu, C., Zhao, X., Guo, Z. (2015) Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil 386, 3545.

    • Search Google Scholar
    • Export Citation
  • 21.

    Longchamp, M., Angeli, N., Castrec-Rouelle, M. (2013) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362, 107117.

    • Search Google Scholar
    • Export Citation
  • 22.

    Marschner, H. (1995) Mineral Nutrition of Higher Plants. Academic Press, London.

  • 23.

    Mayer, J. E., Pfeiffer, W. H., Beyer, P. (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 11, 166170.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405410.

  • 25.

    Mroczek-Zdyrska, M., Wójcik, M. (2011) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol. Trace Elem. Res. 147, 320328.

    • Search Google Scholar
    • Export Citation
  • 26.

    Nagy, K., Lévai, L., Kovács, B. (2010) The effect of selenium supply on maize and sunflower. Növénytermelés 59, 6184.

  • 27.

    Nestel, P., Bouis, H. E., Meenakshi, J. V., Pfeiffer, W. (2006) Biofortification of staple food crops. J. Nutr. 136, 10641067.

  • 28.

    Pedrero, Z., Madrid, Y., Hartikainen, H., Cámara, C. (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. J. Agric. Food Chem. 56, 266271.

    • Search Google Scholar
    • Export Citation
  • 29.

    Poblaciones, M. J., Sara, M., Rodrigo Oscar Santamaría (2012) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under mediterranean conditions. Biol. Trace Elem. Res. 151, 132137.

    • Search Google Scholar
    • Export Citation
  • 30.

    Saidi, I., Chtourou, Y., Djebali, W. (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. Plant Physiol. 171, 8591.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sanchez, M., Revilla, G., Zarra, I. (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl growth. Ann. Bot. 75, 415419.

    • Search Google Scholar
    • Export Citation
  • 32.

    Schachtman, D. P., Reid, R. J., Ayling, S. M. (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol. 16, 447453.

  • 33.

    Schreiber, U., Schliwa, U., Bilger, W. (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 5162.

    • Search Google Scholar
    • Export Citation
  • 34.

    Singh, B. R. (1991) Selenium content of wheat as affected by selenate and selenite contained in a Cl- or SO4-based NPK fertilizer. Fertili. Res. 30, 17.

    • Search Google Scholar
    • Export Citation
  • 35.

    Smrkolj, P., Germ, M., Kreft, I., Stibilj, V. (2006) Respiratory potential and Se compounds in pea (Pisum sativum L.) plants grown from Se-enriched seeds. J. Exp. Bot. 57(14), 35953600.

    • Search Google Scholar
    • Export Citation
  • 36.

    Thavarajah, D., Warkentin, T., Vandenberg, A. (2010) Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.). Can. J. Plant Sci. 90, 383389.

    • Search Google Scholar
    • Export Citation
  • 37.

    Turakainen, M., Hartikainen, H., Seppänen, M. (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem. 52, 53785382.

    • Search Google Scholar
    • Export Citation
  • 38.

    Vance, C. P. (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390397.

    • Search Google Scholar
    • Export Citation
  • 39.

    Vance, C. P., Uhde-Stone, C. D., Allan, L. (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423447.

    • Search Google Scholar
    • Export Citation
  • 40.

    Wang, J., Wang, Z., Mao, H., Zhao, H., Huang, D. (2013) Increasing Se concentration in maize grain with soil-or-foliar-applied selenite on the Loess plateau in China. Field Crops Res. 150, 8390.

    • Search Google Scholar
    • Export Citation
  • 41.

    Wang, Y. D., Wang, X., Wong, Y. S. (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J. Proteomics 75, 18491866.

    • Search Google Scholar
    • Export Citation
  • 42.

    White, P. J., Broadley, M. R. (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci. 10, 586593.

  • 43.

    Ximenez-Embun, P., Alonso, I., Madrid-Albarran, Y., Camara, C. (2004) Establishment of selenium uptake and species distribution in lupine, India mustard and sunflower plants. J. Agric. Food Chem. 52, 832838.

    • Search Google Scholar
    • Export Citation
  • 44.

    Yuan, H., Liu, D. (2008) Signaling components involved in plant responses to phosphate starvation. J. Integr. Plant Biol. 50, 849859.

    • Search Google Scholar
    • Export Citation
  • 45.

    Zayed, A., Lytle, C. M., Terry, N. (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206, 284292.

    • Search Google Scholar
    • Export Citation
  • 46.

    Zembala, M., Filek, M., Walas, S., Mrowiec, H., Kornás, A., Miszalski, Z., Hartikainen, H. (2010) Effect of selenium on macro- and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329, 457468.

    • Search Google Scholar
    • Export Citation
  • 47.

    Zhang, L., Shi, W., Wang, X. (2006) Difference in selenite absorption between high and low-selenium rice cultivars and its mechanism. Plant Soil 282, 183193.

    • Search Google Scholar
    • Export Citation
  • 48.

    Zhang, Y., Pan, G., Chen, J., Hu, Q. (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant Soil 253, 437443.

    • Search Google Scholar
    • Export Citation
  • 49.

    Zhang, Z., Huang, R. (2013) Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. 3(14), e817. DOI: 10.21769/BioProtoc.817; Full text.

  • 50.

    Zhao, F. J., McGrath, S. P. (2009) Biofortification and phytoremediation. Current Opinion in Plant Biology 12, 373380.

  • 51.

    Zhu, Y.-G., Pilon-Smits, E. A. H., Zhao, F.-J., Williams, P. N., Meharg, A. A. (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci. 14, 436442.

    • Search Google Scholar
    • Export Citation