Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml−1 to 38.80 ± 1.35 μg ml−1. We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.
Adhikari, T. B., Joseph, C. M., Yang, G., Phillips, D. A., Nelson, L. M. (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol. 47, 916–924.
Andrews, J. H. (1992) Biological control in the phyllosphere. Ann. Rev. Phytopathol. 30, 603–635.
Aylward, F. O., McDonald, B. R., Adams, S. M., Valenzuela, A., Schmidt, R. A., Goodwin, L. A., Woyke, T., Currie, C. R., Suen, G., Poulsen, M. (2013) Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. App. Environ. Microbiol. 79, 3724–3733.
Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassan, F., Luna, V. (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. 74, 874–880.
Boshra, A. H., Khan, A. L., Waqas, M., Al-Harrasi, A., Hussain, J., Ali, L., Adnan, M., Lee, I. J. (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J. Plant Intera 10, 117–125.
Brooks, D. S., Gonzalez, C. F., Appel, D. N., Filer, T. H. (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control 4, 373–381.
Cohen, A. C., Bottini, R., Piccoli, P. N. (2008) Azospirillum brasilense Sp. 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul. 54, 97–103.
Croes, S., Weyens, N., Colpaert, J., Vangronsveld, J. (2015) Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Envi. Microbiol. 17, 2379–2392.
de-Bashan, L. E., Hernandez, J. P., Morey, T., Bashan, Y. (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus for municipal wastewater. Water Res. 38, 466–474.
Egamberdieva, D., Lugtenberg, B. (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari, M. (ed.) Use of microbes for the alleviation of soil stresses, Vol. 1. Spinger, New York.
Ehmann, A. (1977) The Van Urk–Salkowski reagent–a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 11, 132, 267–276.
Gnanamanickam, S. S. (2009) Rice and its importance to human life. Prog. Biol. Con. 8, 1–11.
Gutiérrez-Zamora, M. L., Martinez-Romero, E. (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91, 117–126.
Gyaneshwar, P., Mathan, E. K. J. N., Reddy, P. M., Hurek, B. R., Ladha, J. (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183, 2634–2645.
Hironobu, M., Hisao, M. (2008) Endophytic bacteria in the rice plant. Microbes Environ. 23, 109–117.
Hardoim, P. R., Hardoim, C. C. P., Van-Overbeek, L. S., Van-Elsas, J. D. (2012) Dynamics of seedborne rice endophytes on early plant growth stages. PLoS ONE 7(2): e30438
Janso, J. E., Carter, G. T. (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl. Environ. Microbiol. 76, 4377–4386.
Kang, S. M., Ramalingam, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R. et al. (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84, 115–124.
Kang, S. M., Radhakrishnan, R., Lee, S. M., Park, Y. G., Kim, A. Y., Seo, C. W., Lee, I. J. (2015) Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiol. Plant 37, 149.
Khan, A. L., Waqas, M., Kang, S. M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah I., Ali, L., Jung, H. Y., Lee, I. J. (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52, 689–695.
Kloepper, J. W., Beauchamp, C. J. (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38, 1219–1232.
Kong, Q. K., Ding, A. Y. (2001) Advances of study on endophytic bacteria as biological control agents. J. Shandong Agric. Univers Nat. Sci. 32, 256–260.
Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., Van-der, L. D. (2002) Endophytic bacteria and their potential applications. Cri. Rev. Plant Sci. 21, 583–606.
Mandyam, K., Jumpponen, A. (2014) Unraveling the dark septate endophyte functions: insights from the Arabidopsis model. In: Verma, V. C., Gange, A. C. (eds) Advances in endophytic research. Springer, India.
Mayak, S., Tirosh, T. R., Glick, B. (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166, 525–530.
Montañez, A., Rodríguez, B. A., Barlocco, C., Beracochea, M., Sicardi, M. (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. App. Soil Ecol. 58, 21–28.
Mutluru, S., Konada, V. M. (2007) Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop, Sesbania sesban (L.) Merr. Iran J. Biotechnol. 5, 178–182.
Shimaila, A., Trevor, C. C., Glick, R. B. (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160–167.
Spaepen, S., Vanderleyden, J., Okon, Y. (2009) Plant growth-promoting actions of rhizobacteria. Adv. Botan. Res. 51, 283–320.
Sturz, A. V., Christie, B. R., Nowak, J. (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19, 1–30.
Sun, R., Guo, X., Wang, D., Chu, H. (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. App. Soil Ecol. 95, 171–178.
Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J., Van-der, L. D. (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. App. Environ. Microbiol. 75, 748–757.
Ullah, I., Khan, A., Park, G.-S., Lim, J.-H., Waqas, M., Lee, I.-J., Shin, J.-H. (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci. Biotechnol. 22, 25–31.
Wahyudi, A. T., Astuti, R. P., Widyawati, A., Meryandini, A., Nawangsih, A. A. (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J. Microbiol. Antimicrobial. 3, 34–40.
Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S.-M., Kim, Y.-H., Lee, I.-J. (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17, 10754–10773.
Xuan, L., Zhu, T.-H., Liu, G.-H., Mao, C. (2012) Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur. J. Soil Biol. 50, 112–117.
Zhao, Y. (2010) Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61, 49–64.