View More View Less
  • 1 Kyungpook National University, Daegu 41566, Republic of Korea
  • 2 Department of Agriculture Extension, Buher 19290, Khyber Pakhtunkhwa, Pakistan
  • 3 University of Nizwa, Nizwa 616, Oman
  • 4 Kyungpook National University, Daegu 41566, Republic of Korea
Restricted access

Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml−1 to 38.80 ± 1.35 μg ml−1. We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  • 1.

    Adhikari, T. B., Joseph, C. M., Yang, G., Phillips, D. A., Nelson, L. M. (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can. J. Microbiol. 47, 916924.

    • Search Google Scholar
    • Export Citation
  • 2.

    Andrews, J. H. (1992) Biological control in the phyllosphere. Ann. Rev. Phytopathol. 30, 603635.

  • 3.

    Aylward, F. O., McDonald, B. R., Adams, S. M., Valenzuela, A., Schmidt, R. A., Goodwin, L. A., Woyke, T., Currie, C. R., Suen, G., Poulsen, M. (2013) Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. App. Environ. Microbiol. 79, 37243733.

    • Search Google Scholar
    • Export Citation
  • 4.

    Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassan, F., Luna, V. (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl. Microbiol. Biotechnol. 74, 874880.

    • Search Google Scholar
    • Export Citation
  • 5.

    Boshra, A. H., Khan, A. L., Waqas, M., Al-Harrasi, A., Hussain, J., Ali, L., Adnan, M., Lee, I. J. (2015) Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J. Plant Intera 10, 117125.

    • Search Google Scholar
    • Export Citation
  • 6.

    Brooks, D. S., Gonzalez, C. F., Appel, D. N., Filer, T. H. (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol. Control 4, 373381.

    • Search Google Scholar
    • Export Citation
  • 7.

    Cohen, A. C., Bottini, R., Piccoli, P. N. (2008) Azospirillum brasilense Sp. 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul. 54, 97103.

    • Search Google Scholar
    • Export Citation
  • 8.

    Croes, S., Weyens, N., Colpaert, J., Vangronsveld, J. (2015) Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Envi. Microbiol. 17, 23792392.

    • Search Google Scholar
    • Export Citation
  • 9.

    de-Bashan, L. E., Hernandez, J. P., Morey, T., Bashan, Y. (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus for municipal wastewater. Water Res. 38, 466474.

    • Search Google Scholar
    • Export Citation
  • 10.

    Egamberdieva, D., Lugtenberg, B. (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari, M. (ed.) Use of microbes for the alleviation of soil stresses, Vol. 1. Spinger, New York.

    • Search Google Scholar
    • Export Citation
  • 11.

    Ehmann, A. (1977) The Van Urk–Salkowski reagent–a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 11, 132, 267276.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gnanamanickam, S. S. (2009) Rice and its importance to human life. Prog. Biol. Con. 8, 111.

  • 13.

    Gutiérrez-Zamora, M. L., Martinez-Romero, E. (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J. Biotechnol. 91, 117126.

    • Search Google Scholar
    • Export Citation
  • 14.

    Gyaneshwar, P., Mathan, E. K. J. N., Reddy, P. M., Hurek, B. R., Ladha, J. (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 183, 26342645.

    • Search Google Scholar
    • Export Citation
  • 15.

    Hironobu, M., Hisao, M. (2008) Endophytic bacteria in the rice plant. Microbes Environ. 23, 109117.

  • 16.

    Hardoim, P. R., Hardoim, C. C. P., Van-Overbeek, L. S., Van-Elsas, J. D. (2012) Dynamics of seedborne rice endophytes on early plant growth stages. PLoS ONE 7(2): e30438

    • Search Google Scholar
    • Export Citation
  • 17.

    Janso, J. E., Carter, G. T. (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl. Environ. Microbiol. 76, 43774386.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kang, S. M., Ramalingam, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R. et al. (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84, 115124.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kang, S. M., Radhakrishnan, R., Lee, S. M., Park, Y. G., Kim, A. Y., Seo, C. W., Lee, I. J. (2015) Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiol. Plant 37, 149.

    • Search Google Scholar
    • Export Citation
  • 20.

    Khan, A. L., Waqas, M., Kang, S. M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah I., Ali, L., Jung, H. Y., Lee, I. J. (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52, 689695.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kloepper, J. W., Beauchamp, C. J. (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38, 12191232.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kong, Q. K., Ding, A. Y. (2001) Advances of study on endophytic bacteria as biological control agents. J. Shandong Agric. Univers Nat. Sci. 32, 256260.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., Van-der, L. D. (2002) Endophytic bacteria and their potential applications. Cri. Rev. Plant Sci. 21, 583606.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mandyam, K., Jumpponen, A. (2014) Unraveling the dark septate endophyte functions: insights from the Arabidopsis model. In: Verma, V. C., Gange, A. C. (eds) Advances in endophytic research. Springer, India.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mayak, S., Tirosh, T. R., Glick, B. (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166, 525530.

    • Search Google Scholar
    • Export Citation
  • 26.

    Montañez, A., Rodríguez, B. A., Barlocco, C., Beracochea, M., Sicardi, M. (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. App. Soil Ecol. 58, 2128.

    • Search Google Scholar
    • Export Citation
  • 27.

    Mutluru, S., Konada, V. M. (2007) Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop, Sesbania sesban (L.) Merr. Iran J. Biotechnol. 5, 178182.

    • Search Google Scholar
    • Export Citation
  • 28.

    Shimaila, A., Trevor, C. C., Glick, R. B. (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 80, 160167.

    • Search Google Scholar
    • Export Citation
  • 29.

    Spaepen, S., Vanderleyden, J., Okon, Y. (2009) Plant growth-promoting actions of rhizobacteria. Adv. Botan. Res. 51, 283320.

  • 30.

    Sturz, A. V., Christie, B. R., Nowak, J. (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19, 130.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sun, R., Guo, X., Wang, D., Chu, H. (2015) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. App. Soil Ecol. 95, 171178.

    • Search Google Scholar
    • Export Citation
  • 32.

    Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J., Van-der, L. D. (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. App. Environ. Microbiol. 75, 748757.

    • Search Google Scholar
    • Export Citation
  • 33.

    Ullah, I., Khan, A., Park, G.-S., Lim, J.-H., Waqas, M., Lee, I.-J., Shin, J.-H. (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci. Biotechnol. 22, 2531.

    • Search Google Scholar
    • Export Citation
  • 34.

    Wahyudi, A. T., Astuti, R. P., Widyawati, A., Meryandini, A., Nawangsih, A. A. (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J. Microbiol. Antimicrobial. 3, 3440.

    • Search Google Scholar
    • Export Citation
  • 35.

    Waqas, M., Khan, A. L., Kamran, M., Hamayun, M., Kang, S.-M., Kim, Y.-H., Lee, I.-J. (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17, 1075410773.

    • Search Google Scholar
    • Export Citation
  • 36.

    Xuan, L., Zhu, T.-H., Liu, G.-H., Mao, C. (2012) Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur. J. Soil Biol. 50, 112117.

    • Search Google Scholar
    • Export Citation
  • 37.

    Zhao, Y. (2010) Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61, 4964.