In a multivalent approach to discover new antimicrobial substance, a total of 160 Bacilli were isolated from termitarium soil, characterized on the basis of their morphological and physiological characters and screened for their antimicrobial activity by agar well diffusion method against certain drug resistant pathogenic bacteria such as Staphylococcus aureus, Methicillin resistant Staphylococcus aureus and common food contaminating bacteria Listeria monocytogenes. After preliminary screening, sixteen isolates showed inhibitory activity against test pathogens. Among them Bacillus isolate TSH58 exhibited maximum inhibitory activity against MRSA, Staphylococcus aureus and Listeria monocytogenes. Based on morphological, physiological, biochemical and 16S rDNA characteristics isolate TSH58 was identified as a member of the Bacillus cereus species group. Various nutrient sources and culture conditions were optimized, the partially purified antimicrobial metabolite was subjected to various treatments such as heat, pH and proteolytic enzymes. Complete loss in the activity observed when the crude metabolite was treated with proteolytic enzymes suggesting its proteinaceous nature and termed as bacteriocin like inhibitory substance (BLIS). Minimal inhibitory concentration of the partially purified bacteriocin determined by microtiter plate assay was 80 μg/ml for MRSA and 40 μg/ml for L. monocytogenes. Tricine SDS PAGE analysis revealed that the partially purified bacteriocin produced by the Bacillus strain TSH58 had an apparent molecular weight of about 4.0 KDa.
Abada, E. A. E. M. (2008) Isolation and characterization of an antimicrobial compound from Bacillus coagulans. Anim. Cells Sys. 12, 41–46.
Allen, H. K., Trachsel, J., Looft, T., Casey, T. A. (2014) Finding alternatives to antibiotics. Ann. New York Acad. Sci. 1323, 91–100.
Aunpad, R., Na-Bangchang, K. (2007) Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr. Microbiol. 55, 308–313.
Aunpad, R., Sripotong, N., Khamlak, K., Inchidjuy, S., Rattanasinganchan, P., Pipatsatitpong, D. (2011) Isolation and characterization of bacteriocin with anti-listeria and anti-MRSA activity produced by food and soil isolated bacteria. Afr. J. Microbiol. 5, 5297–5303.
Baindara, P., Mandal, S. M., Chawla, N., Singh, P. K., Pinnaka, A. K., Korpole, S. (2013) Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Exp. 3, 1–11.
Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Métro, F., Prévost, H., Chober, J. M., Haertlé, T. (2006) Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J. Appl. Microbiol. 101, 837–848.
Bizani, D., Morrissy, J. A. C., Domingue, A. P. M., Brandelli, A. (2008) Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. Int. J. Food Microbiol. 121, 229–233.
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J. (2015) Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51.
Cotter, P. D., Ross, R. P., Hill, C. (2013) Bacteriocins — a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95–105.
Dubey, R. C., Maheshwari, D. K. (2012) Practical Microbiology. S. Chand & Co., New Delhi, India.
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T. (1994) Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins Press, Baltimore, USA.
Joerger, R. D. (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poul. Sci. 82, 640–647.
Jiang, H., Dong, H., Zhang, G., Yu, B., Chapman, L. R., Fields, M. W. (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in north-western China. Appl. Environ. Microbiol. 72, 3832–3845.
Kumar, S., Stecher, G., Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 8, 54–59.
Manjula, A., Sathyavathi, S., Pushpanathan, M., Gunasekaran, P., Rajendhran, J. (2014) Microbial diversity in termite nest. Curr. Sci. 106, 1430–1434.
Naclerio, G., Ricca, E., Sacco, M., de Felice, M. (1993) Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59, 4313–4316.
Naghmouchi, K., Baah, J., Hober, D., Jouy, E., Rubrecht, C., Sané, F., Drider, D. (2013) Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob. Agents Chemother. 57, 2719–2725.
Oscariz, J. C., Cintas, L., Holo, H., Lasa, I., Nes, I. F., Pisabarro, A. G. (2006) Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254, 108–115.
Oscariz, J. C., Lasa, I., Pisabarro, A. G. (1999) Detection and characterization of cerecin 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178, 337–341.
Risoen. P. A. , Ronning, P., Hegna, I. K., Kolsto, A. B. (2004) Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96, 648–655.
Rossolini, G. M., Arena, F., Pecile, P., Pollini, S. (2014) Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 18, 56–60.
Saleem, F., Ahmad, S., Yaqoob, Z., Rasool, S. A. (2009) Comparative study of two bacteriocins produced by representative indigenous soil bacteria. Pak. J. Pharma Sci. 22, 252–258.
Sambrook, J., Russel, D. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
Sansinenea, E., Ortiz, A. (2011) Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 33, 1523–1538.
Schagger, H., Von Jagow, G. (1987) Tricine-sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.
Sebei, S., Zendo, T., Boudabous, A., Nakayama, J., Sonomoto, K. (2007) Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J. Appl. Microbiol. 103, 1621–1631.
Senbagam, D., Gurusamy, R., Senthilkumar, B. (2013) Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pac. J. Trop. Med. 6, 934–941.
Shokri, D., Zaghian, S., Khodabakhsh, F., Fazeli, H., Mobasherizadeh, S., Ataei, B. (2014) Antimicrobial activity of a UV-stable bacteriocin-like inhibitory substance (BLIS) produced by Enterococcus faecium strain DSH20 against vancomycin-resistant Enterococcus (VRE) strains. J. Microbiol. Immunol. Infect. 47, 371–376.
Stein, T., Heinzmann, S., Düsterhus, S., Borchert, S., Entian, K. D. (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187, 822–828.
Tabbene, O., Slimene, I. B., Bouabdallah, F., Mangoni, M. L., Urdaci, M. C., Limam, F. (2009) Production of anti-methicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157, 407–419.
Tagg, J., McGiven, A. R. (1971) Assay system for bacteriocins. Appl. Microbiol. 21, 943.
Wu, W. J., Park, S. M., Ahn, B. Y. (2013) Isolation and characterization of an antimicrobial substance from Bacillus subtilis BY08 antagonistic to Bacillus cereus and Listeria monocytogenes. Food Sci. Biotechnol. 22, 433–440.