View More View Less
  • 1 Gurukul Kangri University, Haridwar 249-404, Uttrakhand, India
  • 2 Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
Restricted access

In a multivalent approach to discover new antimicrobial substance, a total of 160 Bacilli were isolated from termitarium soil, characterized on the basis of their morphological and physiological characters and screened for their antimicrobial activity by agar well diffusion method against certain drug resistant pathogenic bacteria such as Staphylococcus aureus, Methicillin resistant Staphylococcus aureus and common food contaminating bacteria Listeria monocytogenes. After preliminary screening, sixteen isolates showed inhibitory activity against test pathogens. Among them Bacillus isolate TSH58 exhibited maximum inhibitory activity against MRSA, Staphylococcus aureus and Listeria monocytogenes. Based on morphological, physiological, biochemical and 16S rDNA characteristics isolate TSH58 was identified as a member of the Bacillus cereus species group. Various nutrient sources and culture conditions were optimized, the partially purified antimicrobial metabolite was subjected to various treatments such as heat, pH and proteolytic enzymes. Complete loss in the activity observed when the crude metabolite was treated with proteolytic enzymes suggesting its proteinaceous nature and termed as bacteriocin like inhibitory substance (BLIS). Minimal inhibitory concentration of the partially purified bacteriocin determined by microtiter plate assay was 80 μg/ml for MRSA and 40 μg/ml for L. monocytogenes. Tricine SDS PAGE analysis revealed that the partially purified bacteriocin produced by the Bacillus strain TSH58 had an apparent molecular weight of about 4.0 KDa.

  • 1.

    Abada, E. A. E. M. (2008) Isolation and characterization of an antimicrobial compound from Bacillus coagulans. Anim. Cells Sys. 12, 4146.

    • Search Google Scholar
    • Export Citation
  • 2.

    Allen, H. K., Trachsel, J., Looft, T., Casey, T. A. (2014) Finding alternatives to antibiotics. Ann. New York Acad. Sci. 1323, 91100.

    • Search Google Scholar
    • Export Citation
  • 3.

    Aunpad, R., Na-Bangchang, K. (2007) Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr. Microbiol. 55, 308313.

    • Search Google Scholar
    • Export Citation
  • 4.

    Aunpad, R., Sripotong, N., Khamlak, K., Inchidjuy, S., Rattanasinganchan, P., Pipatsatitpong, D. (2011) Isolation and characterization of bacteriocin with anti-listeria and anti-MRSA activity produced by food and soil isolated bacteria. Afr. J. Microbiol. 5, 52975303.

    • Search Google Scholar
    • Export Citation
  • 5.

    Baindara, P., Mandal, S. M., Chawla, N., Singh, P. K., Pinnaka, A. K., Korpole, S. (2013) Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Exp. 3, 111.

    • Search Google Scholar
    • Export Citation
  • 6.

    Batdorj, B., Dalgalarrondo, M., Choiset, Y., Pedroche, J., Métro, F., Prévost, H., Chober, J. M., Haertlé, T. (2006) Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J. Appl. Microbiol. 101, 837848.

    • Search Google Scholar
    • Export Citation
  • 7.

    Bizani, D., Morrissy, J. A. C., Domingue, A. P. M., Brandelli, A. (2008) Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. Int. J. Food Microbiol. 121, 229233.

    • Search Google Scholar
    • Export Citation
  • 8.

    Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., Piddock, L. J. (2015) Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 4251.

    • Search Google Scholar
    • Export Citation
  • 9.

    Cotter, P. D., Ross, R. P., Hill, C. (2013) Bacteriocins — a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95105.

  • 10.

    Dubey, R. C., Maheshwari, D. K. (2012) Practical Microbiology. S. Chand & Co., New Delhi, India.

  • 11.

    Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T. (1994) Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins Press, Baltimore, USA.

    • Search Google Scholar
    • Export Citation
  • 12.

    Joerger, R. D. (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poul. Sci. 82, 640647.

  • 13.

    Jiang, H., Dong, H., Zhang, G., Yu, B., Chapman, L. R., Fields, M. W. (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in north-western China. Appl. Environ. Microbiol. 72, 38323845.

    • Search Google Scholar
    • Export Citation
  • 14.

    Kumar, S., Stecher, G., Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 8, 5459.

    • Search Google Scholar
    • Export Citation
  • 15.

    Manjula, A., Sathyavathi, S., Pushpanathan, M., Gunasekaran, P., Rajendhran, J. (2014) Microbial diversity in termite nest. Curr. Sci. 106, 14301434.

    • Search Google Scholar
    • Export Citation
  • 16.

    Naclerio, G., Ricca, E., Sacco, M., de Felice, M. (1993) Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59, 43134316.

    • Search Google Scholar
    • Export Citation
  • 17.

    Naghmouchi, K., Baah, J., Hober, D., Jouy, E., Rubrecht, C., Sané, F., Drider, D. (2013) Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob. Agents Chemother. 57, 27192725.

    • Search Google Scholar
    • Export Citation
  • 18.

    Oscariz, J. C., Cintas, L., Holo, H., Lasa, I., Nes, I. F., Pisabarro, A. G. (2006) Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254, 108115.

    • Search Google Scholar
    • Export Citation
  • 19.

    Oscariz, J. C., Lasa, I., Pisabarro, A. G. (1999) Detection and characterization of cerecin 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178, 337341.

    • Search Google Scholar
    • Export Citation
  • 20.

    Risoen. P. A. , Ronning, P., Hegna, I. K., Kolsto, A. B. (2004) Characterization of a broad range antimicrobial substance from Bacillus cereus. J. Appl. Microbiol. 96, 648655.

    • Search Google Scholar
    • Export Citation
  • 21.

    Rossolini, G. M., Arena, F., Pecile, P., Pollini, S. (2014) Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 18, 5660.

    • Search Google Scholar
    • Export Citation
  • 22.

    Saleem, F., Ahmad, S., Yaqoob, Z., Rasool, S. A. (2009) Comparative study of two bacteriocins produced by representative indigenous soil bacteria. Pak. J. Pharma Sci. 22, 252258.

    • Search Google Scholar
    • Export Citation
  • 23.

    Sambrook, J., Russel, D. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    • Search Google Scholar
    • Export Citation
  • 24.

    Sansinenea, E., Ortiz, A. (2011) Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 33, 15231538.

  • 25.

    Schagger, H., Von Jagow, G. (1987) Tricine-sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368379.

    • Search Google Scholar
    • Export Citation
  • 26.

    Sebei, S., Zendo, T., Boudabous, A., Nakayama, J., Sonomoto, K. (2007) Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J. Appl. Microbiol. 103, 16211631.

    • Search Google Scholar
    • Export Citation
  • 27.

    Senbagam, D., Gurusamy, R., Senthilkumar, B. (2013) Physical chemical and biological characterization of a new bacteriocin produced by Bacillus cereus NS02. Asian Pac. J. Trop. Med. 6, 934941.

    • Search Google Scholar
    • Export Citation
  • 28.

    Shokri, D., Zaghian, S., Khodabakhsh, F., Fazeli, H., Mobasherizadeh, S., Ataei, B. (2014) Antimicrobial activity of a UV-stable bacteriocin-like inhibitory substance (BLIS) produced by Enterococcus faecium strain DSH20 against vancomycin-resistant Enterococcus (VRE) strains. J. Microbiol. Immunol. Infect. 47, 371376.

    • Search Google Scholar
    • Export Citation
  • 29.

    Stein, T., Heinzmann, S., Düsterhus, S., Borchert, S., Entian, K. D. (2005) Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. J. Bacteriol. 187, 822828.

    • Search Google Scholar
    • Export Citation
  • 30.

    Tabbene, O., Slimene, I. B., Bouabdallah, F., Mangoni, M. L., Urdaci, M. C., Limam, F. (2009) Production of anti-methicillin-resistant Staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Appl. Biochem. Biotechnol. 157, 407419.

    • Search Google Scholar
    • Export Citation
  • 31.

    Tagg, J., McGiven, A. R. (1971) Assay system for bacteriocins. Appl. Microbiol. 21, 943.

  • 32.

    Wu, W. J., Park, S. M., Ahn, B. Y. (2013) Isolation and characterization of an antimicrobial substance from Bacillus subtilis BY08 antagonistic to Bacillus cereus and Listeria monocytogenes. Food Sci. Biotechnol. 22, 433440.

    • Search Google Scholar
    • Export Citation