View More View Less
  • 1 MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, Közép fasor 52, H-6726 Szeged, Hungary
  • 2 University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
  • 3 King Saud University, Riyadh 11451, Saudi Arabia
Restricted access

Despite the current therapeutic options, filamentous fungal infections are associated with high mortality rate especially in immunocompromised patients. In order to find a new potential therapeutic approach, the in vitro inhibitory effect of two antiarrhythmic agents, diltiazem and verapamil hydrochloride were tested against different clinical isolates of ascomycetous and mucoralean filamentous fungi. The in vitro combinations of these non-antifungal drugs with azole and polyene antifungal agents were also examined. Susceptibility tests were carried out using the broth microdilution method according to the instructions of the Clinical and Laboratory Standards Institute document M38-A2. Checkerboard microdilution assay was used to assess the interactions between antifungal and non-antifungal drugs. Compared to antifungal agents, diltiazem and verapamil hydrochloride exerted a relatively low antifungal activity with high minimal inhibitory concentration values (853–2731 μg/ml). Although in combination they could increase the antifungal activity of amphotericin B, itraconazole and voriconazole. Indifferent and synergistic interactions were registered in 33 and 17 cases, respectively. Antagonistic interactions were not revealed between the investigated compounds. However, the observed high MICs suggest that these agents could not be considered as alternative systemic antifungal agents.

  • 1.

    Afeltra, J., Verweij, P. E. (2003) Antifungal activity of non-antifungal drugs. Eur. J. Clin. Microbiol. Infect. Dis. 22, 397407.

  • 2.

    Afeltra, J., Vitale, R. G., Mouton, J. W., Verweij, P. E. (2004) Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole. Antimicrob. Agents Chemother. 48, 13351343.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ashbee, H. R., Barnes, R. A., Johnson, E. M., Richardson, M. D., Gorton, R., Hope, W. W. (2014) Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 69, 11621176.

    • Search Google Scholar
    • Export Citation
  • 4.

    Bulatova, N. R., Darwish, R. M. (2008) Effect of chemosensitizers on minimum inhibitory concentrations of fluconazole in Candida albicans. Med. Princ. Pract. 17, 117121.

    • Search Google Scholar
    • Export Citation
  • 5.

    CLSI (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; Approved StandardSecond Edition. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne.

    • Search Google Scholar
    • Export Citation
  • 6.

    Crabol, Y., Lortholary, O. (2014) Invasive mold infections in solid organ transplant recipients. Scientifica 2014, 821969.

  • 7.

    Denning, D. W., Bromley, M. J. (2015) How to bolster the antifungal pipeline. Science 347, 14141416.

  • 8.

    Eliopoulos, G. M., Moellering, R. C. (1996) Antimicrobial combinations. In: Lorian, V. (ed.) Antibiotics In Laboratory Medicine. 4 th Edition. The Williams and Wilkins Co., Baltimore, pp. 330396.

    • Search Google Scholar
    • Export Citation
  • 9.

    GAFFI — Global Action Fund for Fungal Infections (2015) Report on activities for 2015. Available from: http://www.gaffi.org/official-documents-and-reports/. Accessed 21 July 2016.

    • Search Google Scholar
    • Export Citation
  • 10.

    Hamill, R. J. (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73, 919934.

  • 11.

    Johnson, M. D., MacDougall, C., Ostrosky-Zeichner, L., Perfect, J. R., Rex, J. H. (2004) Combination antifungal therapy. Antimicrob. Agents Chemother. 48, 693715.

    • Search Google Scholar
    • Export Citation
  • 12.

    Khalaf, R. M., Jabir, H. B., Abbas, F. N. (2012) Investigation of the antifungal activity of some nonantifungal drugs in clinical isolates of otomycosis. J. Thi-Qar. Sci. 3, 3139.

    • Search Google Scholar
    • Export Citation
  • 13.

    Köppel, C., Wagemann, A. (1991) Plasma level monitoring of D,L-verapamil and three of its metabolites by reversed-phase high-performance liquid chromatography. J. Chromatogr. 570, 229234.

    • Search Google Scholar
    • Export Citation
  • 14.

    Krajewska-Kułak, E., Niczyporuk, W. (1993) Effects of the combination of ketoconazole and calcium channel antagonists against Candida albicans in vitro. Arzneimittelforschung 43, 782783.

    • Search Google Scholar
    • Export Citation
  • 15.

    Levy, R., Dana, R., Gold, B., Alkan, M., Schlaeffer, F. (1991) Influence of calcium channel blockers on polymorphonuclear and monocyte bactericidal and fungicidal activity. Isr. J. Med. Sci. 27, 301306.

    • Search Google Scholar
    • Export Citation
  • 16.

    Lewis, R. E. (2008) What is the “therapeutic range” for voriconazole? Clin. Infect. Dis. 46, 212214.

  • 17.

    Liu, S., Yue, L., Gu, W., Li, X., Zhang, L., Sun, S. (2016) Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans. PLoS ONE 11, e0150859.

    • Search Google Scholar
    • Export Citation
  • 18.

    Low, C.-Y., Rotstein, C. (2011) Emerging fungal infections in immunocompromised patients. F1000 Med. Rep. 3, 14.

  • 19.

    Mendoza, L., Vilela, R., Voelz, K., Ibrahim, A. S., Voigt, K., Lee, S. C. (2014) Human fungal pathogens of Mucorales and Entomophthorales. Cold Spring Harb. Perspect. Med. 5, a019562.

    • Search Google Scholar
    • Export Citation
  • 20.

    Methaneethorn, J., Chamnansua, M., Kaewdang, N., Lohitnavy, M. (2014) A pharmacokinetic drug–drug interaction model of simvastatin and verapamil in humans. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 57115714.

    • Search Google Scholar
    • Export Citation
  • 21.

    Monteiro, N., Silvestre, J., Gonçalves-Pereira, J., Tapadinhas, C., Mendes, V., Póvoa, P. (2013) Severe diltiazem poisoning treated with hyperinsulinaemia-euglycaemia and lipid emulsion. Case Rep. Crit. Care 2013, 138959.

    • Search Google Scholar
    • Export Citation
  • 22.

    Odds, F. C. (2003) Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52, 1.

  • 23.

    Pina-Vaz, C., Rodrigues, A. G., Costa-de-Oliveira, S., Ricardo, E., Mårdh, P. A. (2005) Potent synergic effect between ibuprofen and azoles on Candida resulting from blockade of efflux pumps as determined by FUN-1 staining and flow cytometry. J. Antimicrob. Chemother. 56, 678685.

    • Search Google Scholar
    • Export Citation
  • 24.

    Praveen, R. J., Subramanyam, C. (1999) Requirement of Ca2+ for aflatoxin production: inhibitory effect of Ca2+ channel blockers on aflatoxin production by Aspergillus parasiticus NRRL 2999. Lett. Appl. Microbiol. 28, 8588.

    • Search Google Scholar
    • Export Citation
  • 25.

    Richards, D., Aronson, J., Reynolds, D. J., Coleman, J. (2011) Oxford Handbook of Practical Drug Therapy. 2 nd Edition. Oxford University Press, Oxford.

    • Search Google Scholar
    • Export Citation
  • 26.

    Roilides, E., Dotis, J., Katragkou, A. (2007) Fusarium and Scedosporium: emerging fungal pathogens. In: Kavanagh, K. (ed.) New Insights in Medical Mycology. Springer, Dordrecht, pp. 267285.

    • Search Google Scholar
    • Export Citation
  • 27.

    Yu, Q., Ding, X., Xu, N., Cheng, X., Qian, K., Zhang, B., Xing, L., Li, M. (2013) In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Int. J. Antimicrob. Agents 41, 179182.

    • Search Google Scholar
    • Export Citation
  • 28.

    Yu, Q., Ding, X., Zhang, B., Xu, N., Jia, C., Mao, J., Zhang, B., Xing, L., Li, M. (2014) Inhibitory effect of verapamil on Candida albicans hyphal development, adhesion and gastrointestinal colonization. FEMS Yeast Res. 14, 633641.

    • Search Google Scholar
    • Export Citation
  • 29.

    Yu, Q., Xiao, C., Zhang, K., Jia, C., Ding, X., Zhang, B., Wang, Y., Li, M. (2014) The calcium channel blocker verapamil inhibits oxidative stress response in Candida albicans. Mycopathologia 177, 167177.

    • Search Google Scholar
    • Export Citation