The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.
Azcón-Aguilar, C., Barea, J. M. (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6, 457–464.
Baslam, M., Goicoechea, N. (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22, 347–359.
Bonfante-Fasolo, P. (1988) The role of the cell wall as a signal in mycorrhizal associations. In: Scannerini, S., Smith, D., Bonfante-Fasolo, P., Gianinnazzi, V. (eds) Cell to cell signals in plant, animal and microbial symbiosis. Springer Berlin Heidelberg, pp. 219–235.
Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., Jackson, L. E. (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake,water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ. 566–567, 1223–1234.
Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.
Bunn, R., Lekberg, Y., Zabinski, C. (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90, 1378–1388.
Cameron, D. D., Neal, A. L., van Wees, S. C. M., Ton, J. (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 18, 539–545.
Cetinkaya, H., Tasci, E., Dinler, B. S. (2014) Regulation of glutathione S-transferase enzyme activity with salt pre-treatment under heat stress in maize leaves. Res. Plant Biol. 4, 5.
Chen, S., Jin, W., Liu, A., Zhang, S., Liu, D., Wang, F., Lin, X., He, C. (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci. Horticult. 160, 222–229.
Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., Gianinazzi, Pearson V. (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant Microbe Interact. 11, 1017–1028.
Dehghan, G., Amjad, L., Nosrati, H. (2013) Enzymatic and non-enzymatic antioxidant responses of alfalfa leaves and roots under different salinity levels. Acta Biol. Hung. 64, 207–217.
Edwards, E., Dixon, P. D., Walbot V. (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5, 193–198.
Elstner, E. F. (1982) Oxygen activation and oxygen-toxicity. Ann. Rev. Plant Physiol. Plant Mol. Biol. 33, 73–96.
El-Tohamy, W., Schnitzler, W. H., El-Behairy, U., El-Beltagy, M. S. (1999) Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants (Phaseolus vulgaris L.). Angewandte Botanik 73, 178–183.
Ergün, N., Özçubukçu, S., Kolukirik, M., Temizkan, Ö. (2014) Effects of temperature-heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings. Acta Biol. Hung. 65, 439–450.
Fehrmann, H., Dimond, A. E. (1967) Peroxidase activity and phytophthora resistance in different organs of the potato plant. Phytopathology 57, 69–72.
Giovannetti, M., Mosse, B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84, 489–500.
Habig, W., Pabst, M. J., Jakoby, W. B. (1974) The first enzymatic step in mercapturic acid formation. Glutathione-S-transferase. J. Biol. Chem. 249, 7130–7139.
Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., Pozo, M. J. (2012) Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651–664.
Kohler, J., Hernández, J. A., Caravaca, F., Roldán, A. (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65, 245–252.
Lambais, M. R., Ríos-Ruiz, W. F., Andrade, R. M. (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytologist 160, 421–428.
Latef, A. A. H. A., Chaoxing, H. (2011) Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol. Plant. 33, 1217–1225.
Lendzemo, V. W., Kuyper, T. W., Matusova, R., Bouwmeester, H. J., Ast, A. V. (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal. Behavior 2, 58–62.
Liu, X., Mao, K., Angela, Y. H., Omairi-Nasser, A., Austin, J., Glick, B. S., Klionsky, D. J. (2016) The Atg17-Atg31-Atg29 complex coordinates with Atg11 to recruit the Vam7 SNARE and mediate autophagosome-vacuole fusion. Current Biol. 26, 150–160.
López-Ráez, J. A., Charnikhova, T., Fernández, I., Bouwmeester, H., Pozo, M. J. (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J. Plant physiol. 168, 294–297.
Matsumura, A., Horii, S., Ishii, T. (2007) Effects of arbuscular mycorrhizal fungi and intercropping with bahiagrass on growth and anti-oxidative enzyme activity of radish. J. Jap. Soc. Horticult. Sci. 76, 224–229.
Mayer, A. M. (2006) Polyphenol oxidases in plants and fungi: Going places? A review. Phytochem. 67, 2318–2331.
Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.
Ordoñez, N. M., Marondedze, C., Thomas, L., Pasqualini, S., Shabala, L., Shabala, S., Gehring, C. (2014) Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots. FEBS letters, 588, 1008–1015.
Passardi, F., Penel, C., Dunand, C. (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9, 534–540.
Paszkowski, U. (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Op. Plant Biol. 9, 364–370.
Pérez, E., Rodríguez, Y., Hernández, M. A., de la Noval y B. M. (2004) Dinámica de inducción de algunos sistemas de defensa en la interacción HMA-tomate (Lycopersicon esculentum Mill.) var. Amalia. II. Inducción y expresión de peroxidasas y polifenoloxidasas en raíces de tomate. Cultivos Tropicales 25, 45–52.
Pfeiffer, T., Štolfa, I., Žanić, M., Pavičić, N., Cesar, V., Lepeduš, H. (2013) Oxidative stress in leaves of two olive cultivars under freezing conditions. Acta Biol. Hung. 64, 341–351.
Pozo, M. J., López-Ráez, J. A., Azcón-Aguilar, C., García-Garrido, J. M. (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205, 1431–1436.
Pozo, M. J., Azcón-Aguilar, C. (2007) Unravelling mycorrhiza-induced resistance. Curr. Op. Plant Biol. 10, 393–398.
Pozo, M. J., Cordier, C., Dumas-Gaudot, E. (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53, 525–534.
Radwan, O., Mouzeyar, S., Venisse, J. S., Nicolas, P., Bouzidi, M. F. (2005) Resistance of sunflower to the biotrophic oomycete Plasmopara halstedii is associated with a delayed hypersensitive response within the hypocotyls. J. Exp. Bot. 56, 1683–2693.
Rahmaty, R., Khara, J. (2011) Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turkish J. Biol. 35, 51–58.
Rathmell, W. G., Sequeira, L. (1974) Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Plant Physiol. 53, 317–318.
Rodríguez, Y., Vierheilig, H., Mazorra, L. M. (2012) Alterations of the Antioxidant Enzyme Activities are not General Characteristics of the Colonization Process by Arbuscular Mycorrhizal Fungi. Chilean J. Agric. Res. 72, 411–418.
Scervino, J. M., Gottlieb, A., Silvani, V. A., Pérgola, M., Fernández, L., Godeas, A. M. (2009) Exudates of dark septate endophyte (DSE) modulate the development of the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. Soil Biol. Biochem. 41, 1753–1756.
Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., Godeas, A. (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol. Res. 109, 789–794.
Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Bornpadre, J., Vierheilig, H., Ocampo, J. A., Godeas, A. (2007) The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can. J. Microbiol. 53, 702–709.
Sharma, R., Yang, Y., Sharma, A., Awasthi, S., Awasthi, Y. C. (2004) Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal. 6, 289–300.
Smith, S. E., Jakobsen, I., Grønlund, M., Smith, F. A. (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050–1057.
Smith, S. E., Read, D. J. (1997) Mycorrhizal Symbiosis, 2nd ed. Academic Press, London.
Smith, S. E., Read, D. J. (2008) Mycorrhizal Symbiosis, 3rd ed. Academic Press, London.
Smith, S. E., Smith, F. A. (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu. Rev. Plant Biol. 63, 227–250.
Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J. P., Vierheilig, H. (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plantfungus interactions. Molecules 12, 1290–1306.
Taylor, T. N., Remy, W., Hass, H., Kerp, H. (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87, 560–573.
Vierheilig, H., Coughlan, A. P., Wyss, U., Piché, Y. (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 5004–5007.
Wagner, U., Edwards, R., Dixon, D. P., Mauch, F. (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49, 515–532.
Wu, Q. S., Zou, Y. N. (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ. 55, 436–442.
Xin, Z., Browse, J. (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell & Environ. 23, 893–902.
Zhu, J., Ha Lee B., Dellinger M., Cui X., Zhang C., Wu S., Nothnagel E.A., Zhu J.K. (2010) A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J. 63, 128–140.