View More View Less
  • 1 Szent István University, H-1118, 29-43 Villányi Street, Budapest, Hungary
  • | 2 Szent István University, H-1118, 29-43 Villányi Street, Budapest, Hungary
Restricted access

In order to evaluate the salinity tolerance of grafted watermelon, two sets of experiments were conducted in a growing chamber where ‘Esmeralda’ varieties were grafted onto interspecific squash (Cucurbita maxima Duch. × Cucurbita moschata Duch.) and Lagenaria siceraria rootstocks. Both non-grafted and self-garfted plants were used for control. For salt stress, 2.85 and 4.28 mM/l substrate doses of NaCl were added with each irrigation in 2 day intervals for a duration of 23 days. Interspecific-grafted plants showed the highest salinity tolerance as plant biomass and leaf area were not decreased but improved by salinity in most cases. Furthermore, transpiration and photosynthesis activity did not decrease as much as it did in the case of other grafting combinations. Interspecific and Lagenaria rootstocks showed sodium retention, as elevation of Na+ content in the leaves of these grafting combinations was negligible compared to self-grafted and non-grafted ones. Presumably abiotic stress tolerance can be enhanced by grafting per se considering measured parameters of self-grafted plants did not decrease as much as seen in non-grafted ones.

  • 1.

    Ashraf, M. (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol. Plantarum 36, 255259.

  • 2.

    Benzie, I. F., Strain, J. J. (1966) The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP essay. Anal. Biochem. 239, 7076.

    • Search Google Scholar
    • Export Citation
  • 3.

    Borochov-Neori, H., Borochov, A. (1991) Response of melon plants to salt: 1. Growth, morphology and root membrane properties. J. Plant Physiol. 139, 100105.

    • Search Google Scholar
    • Export Citation
  • 4.

    Bulder, H. A. M., Van Hasselt, P. R., Kuiper, P. J. C., Speek, E. J., Den Nijs, A. P. M. (1990) The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. J. Plant Physiol. 138, 661666.

    • Search Google Scholar
    • Export Citation
  • 5.

    Cheeseuman, J. M. (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87, 547550.

  • 6.

    Chanwitheesuk, A., Teerawutgulrag, A., Rakariyatham, N. (2005) Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food chemistry 92, 491497.

    • Search Google Scholar
    • Export Citation
  • 7.

    Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A., Rea, E. (2006a) Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. J. Hortic Sci. Biotech. 81, 146152.

    • Search Google Scholar
    • Export Citation
  • 8.

    Colla, G., Roupheal, Y., Cardarelli, M. (2006b) Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. Hortic Sci. 41, 622627.

    • Search Google Scholar
    • Export Citation
  • 9.

    Colla, G., Rouphael, Y., Leopardi, C., Bie, Z. (2010) Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. Amsterdam 127, 147155.

    • Search Google Scholar
    • Export Citation
  • 10.

    Colla, G., Rouphael, Y., Reac, E., Cardarelli, M. (2012) Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Sci. Hortic. Amsterdam 135, 177185.

    • Search Google Scholar
    • Export Citation
  • 11.

    Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., Huh, Y. C., Sun, Z., Miguel, A., King, S. R., Cohen, R., Lee, J. M. (2008) Cucurbit grafting. Crit. Rev. Plant Sci. 27, 5074.

    • Search Google Scholar
    • Export Citation
  • 12.

    Dixon, R. A., Paiva, N. L. (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7, 1085.

  • 13.

    Edelstein, M., Ben-Hur, M., Cohen, R., Burger, Y., Ravina, I. (2005) Boron and salinity effects on grafted and non-grafted melon plants. Plant Soil 269, 273284.

    • Search Google Scholar
    • Export Citation
  • 14.

    Estañ, M. T., Martinez-Rodriguez, M. M., Perez-Alfocea, F., Flowers, T. J., Bolarin, M. C. (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56: 703712.

    • Search Google Scholar
    • Export Citation
  • 15.

    Goreta, S., Bucevic-Popovic, V., Selak, G. V., Pavela-Vrancic, M., Perica, S. (2008) Vegetative growth, superoxide dismutase activity and ion concentration of salt stressed watermelon as influenced by rootstock. J. Agr. Sci. 146, 695704.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Phys. 51, 463499.

    • Search Google Scholar
    • Export Citation
  • 17.

    George, E., Horst, W., Neumann, E. (2012) Saline soil. In: Marschner, P. (ed.) Mineral nutrition of higher plants. Academic Press, New York, pp. 455473.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kaya, C., Kirnak , Higgs, H., Saltali, K. (2002) Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. Amsterdam 93, 6572.

    • Search Google Scholar
    • Export Citation
  • 19.

    Marschner, H. (1995) Saline soil. In: Mineral nutrition of higher plants. Academic Press, New York, pp. 657680.

  • 20.

    Munns, R., Tester, M. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651681.

  • 21.

    Orsini, F., Sanoubar, R., Oztekin, G. B., Kappel, N., Tepecik, M., Quacquarelli, C., Tuzel, Y., Bona, B., Gianquinto, G. (2013) Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Funct. Plant Biol. 40, 628636.

    • Search Google Scholar
    • Export Citation
  • 22.

    Otani, T., Seike, N. (2007) Rootstock control of fruit dieldrin concentration in grafted cucumber (Cucumis sativus). J. Pestic. Sci. 32, 235242.

    • Search Google Scholar
    • Export Citation
  • 23.

    Proebsting, W. M., Hedden, P., Lewis, M. J., Croker, S. J., Proebsting, L. N. (1992) Gibberellin concentration and transport in genetic lines of pea effects of grafting. Plant Physiol 100, 13541360.

    • Search Google Scholar
    • Export Citation
  • 24.

    Pulgar, G.,Villora, G., Moreno, D. A., Romero, L. (2000) Improving the mineral nutrition in grafted watermelon plants: Nitrogen metabolism. Biol. Plantarum 43, 607609.

    • Search Google Scholar
    • Export Citation
  • 25.

    Rezazadeh, A., Ghasemnezhad, A., Barani, M., Telmadarrehei, T. (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res. J. Med. Plant 6, 245252.

    • Search Google Scholar
    • Export Citation
  • 26.

    Rivero, R. M., Ruiz, J. M., Romero, L. (2003a) Role of grafting in horticultural plants under stress conditions. J. Food Agric. Environ. 1, 7074.

    • Search Google Scholar
    • Export Citation
  • 27.

    Rivero, R. M., Ruiz, J. M., Sanchez, E., Romero, L. (2003b) Does grafting provide tomato plants and advantages against H2O2 production under conditions of thermal shock? Plant Physiol. 117, 4450.

    • Search Google Scholar
    • Export Citation
  • 28.

    Romera, F. J., Alcántara, E., De La Guardia, M. D. (1991) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. Plant Soil 130, 121125.

    • Search Google Scholar
    • Export Citation
  • 29.

    Romero, L., Belakbir, A., Ragala, L., Ruiz, M. (1997) Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). Soil Sci. Plant Nutr. 41, 855862.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rouphael, Y., Cardarelli, M., Rea, E., Colla, G. (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ. Exp. Bot. 63, 4958.

    • Search Google Scholar
    • Export Citation
  • 31.

    Ruiz, J. M., Belakbir, A., Lopez-Cantarero, I., Romero, L. (1997) Leaf macronutrient content and yield in grafted melon plants: a model to evaluate the influence of rootstocks genotype. Sci. Hortic-Amsterdam 71, 227234.

    • Search Google Scholar
    • Export Citation
  • 32.

    Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., Mendizabal, I., Pascual-Ahuir, A., Proft, M., Ros, R., Montesinos, C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50, 10231036.

    • Search Google Scholar
    • Export Citation
  • 33.

    Singleton, V. L., Rossi, J. A. (1965) Colorimetry of total phenolics with phosphomolibdic-phosphotunstic acid reagents. Am. J. Enol. Viticult 161, 144158.

    • Search Google Scholar
    • Export Citation
  • 34.

    Wei, G. Y., Zhu, Z., Liu, L., Yang, G., Zhang (2007) Growth and ion distribution in grafted eggplant seedling under NaCl stress. Acta Bot. Sin. 27, 11721178.

    • Search Google Scholar
    • Export Citation
  • 35.

    Yetisir, H., Uygur, V. (2010) Responses of grafted watermelon onto different gourd species to salinity stress. J. Plant Nutr. 33, 315327.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zhu, J., Bie, Z. L., Huang, Y., Han, X. Y. (2008) Effect of grafting on the growth and ion contents of cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 54, 895902.

    • Search Google Scholar
    • Export Citation
  • 37.

    Zhen, Z., Bie, Y., Huang, Z., Liu, Q. Li (2010) Effects of scion and rootstock genotypes on the antioxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci. Plant Nutr. 56, 263271.

    • Search Google Scholar
    • Export Citation
  • 38.

    Zhu, S. N., Guo, S. R. (2009) Effects of Grafting on K+, Na+ Contents and Distribution of Watermelon (Citrullus vulgaris Schrad.) Seedlings Under NaCl Stress. Acta Hortic Sin. 36, 814820.

    • Search Google Scholar
    • Export Citation

Editorial Board

      Csányi, Vilmos (Göd)
      Dudits, Dénes (Szeged)
      Falus, András (Budapest)
      Fischer, Ernő (Pécs)
      Gábriel, Róbert (Pécs)
      Gulya, Károly (Szeged)
      Gulyás, Balázs (Stockholm)
      Hajós, Ferenc (Budapest)
      Hámori, József (Budapest)
      Heszky, László (Gödöllő)
      Hideg, Éva (Szeged)
      E. Ito (Sanuki)
      Janda, Tibor (Martonvásár)
      Kavanaugh, Michael P. (Missoula)
      Kása, Péter (Szeged)
      Klein, Éva (Stockholm)
      Kovács, János (Budapest)
      Brigitte Mauch-Mani (Neuchâtel)
      Nässel, Dick R. (Stockholm)
      Nemcsók, János (Szeged)
      Péczely, Péter (Gödöllő)
      Roberts, D. F. (Newcastle-upon-Tyne)
      Sakharov, Dimitri A. (Moscow)
      Singh, Meharvan (Fort Worth)
      Sipiczky, Mátyás (Debrecen)
      Szeberényi, József (Pécs)
      Székely, György (Debrecen)
      Tari, Irma (Szeged)
      Vágvölgyi, Csaba (Szeged),
      L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)