Authors:
Gergely Zachar Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary

Search for other papers by Gergely Zachar in
Current site
Google Scholar
PubMed
Close
,
Tamás Jakó Semmelweis University, Budapest, Hungary

Search for other papers by Tamás Jakó in
Current site
Google Scholar
PubMed
Close
,
István Vincze Semmelweis University, Budapest, Hungary

Search for other papers by István Vincze in
Current site
Google Scholar
PubMed
Close
,
Zsolt Wagner Semmelweis University, Budapest, Hungary

Search for other papers by Zsolt Wagner in
Current site
Google Scholar
PubMed
Close
,
Tamás Tábi Semmelweis University, Budapest, Hungary

Search for other papers by Tamás Tábi in
Current site
Google Scholar
PubMed
Close
,
Eszter Bálint Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary

Search for other papers by Eszter Bálint in
Current site
Google Scholar
PubMed
Close
,
Szilvia Mezey Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary

Search for other papers by Szilvia Mezey in
Current site
Google Scholar
PubMed
Close
,
Éva Szökő Semmelweis University, Budapest, Hungary

Search for other papers by Éva Szökő in
Current site
Google Scholar
PubMed
Close
, and
András Csillag Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary

Search for other papers by András Csillag in
Current site
Google Scholar
PubMed
Close
Restricted access

D-aspartate (D-Asp) modulates adult neural plasticity and embryonic brain development by promoting cell proliferation, survival and differentiation. Here, developmental changes of the excitatory amino acids (EAAs) L-Glu, L-Asp and D-Asp were determined during the first postembryonic days, a time window for early learning, in selected brain regions of domestic chickens after chiral separation and capillary electrophoresis. Extracellular concentration (ECC) of EAAs was measured in microdialysis samples from freely moving chicks. ECC of D-Asp (but not L-EAAs) decreased during the first week of age, with no considerable regional or learning-related variation. ECC of L-Asp and L-Glu (but not of D-Asp) were elevated in the mSt/Ac in response to a rewarding stimulus, suggesting importance of Asp-Glu co-release in synaptic plasticity of basal ganglia. Potassium-evoked release of D-Asp, with a protracted transient, was also demonstrated. D-Asp constitutes greater percentage of total aspartate in the extracellular space than in whole tissue extracts, thus the bulk of D-Asp detected in tissue appears in the extracellular space. Conversely, only a fraction of tissue L-EAAs can be detected in extracellular space. The lack of changes in tissue D-Asp following avoidance learning indicates a tonic, rather than phasic, mechanism in the neuromodulatory action of this amino acid.

  • 1.

    Ádám, A. S., Csillag, A. (2006) Differential distribution of L-aspartate- and L-glutamateimmunoreactive structures in the arcopallium and medial striatum of the domestic chick (Gallus domesticus). J. Comp. Neurol. 498, 266276.

    • Search Google Scholar
    • Export Citation
  • 2.

    Balázs, D., Csillag, A., Gerber, G. (2012) L-aspartate effects on single neurons and interactions with glutamate in striatal slice preparation from chicken brain. Brain Res. 1474, 17.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bálint, E., Csillag, A. (2007) Nucleus accumbens subregions: hodological and immunohistochemical study in the domestic chick (Gallus domesticus). Cell Tissue Res. 327, 221230.

    • Search Google Scholar
    • Export Citation
  • 4.

    Bateson, P. (1966) The characteristics and context of imprinting. Biol. Rev. 41, 177220.

  • 5.

    Csillag, A. (1999) Striato-telencephalic and striato-tegmental circuits: relevance to learning in domestic chicks. Behav. Brain Res. 98, 227236.

    • Search Google Scholar
    • Export Citation
  • 6.

    Daisley, J. N., Gruss, M., Rose, S. P. R., Braun, K. (1998) Passive avoidance training and recall are associated with increased glutamate levels in the intermediate medial hyperstriatum centrale of the day-old chick. Neural Plast. 6, 5361.

    • Search Google Scholar
    • Export Citation
  • 7.

    D’Aniello, A. (2007) D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 53, 215234.

  • 8.

    D’Aniello, A., Guiditta, A. (1977) Identification of D-aspartic acid in the brain of Octopus vulgaris Lam. J. Neurochem. 29, 10531057.

    • Search Google Scholar
    • Export Citation
  • 9.

    D’Aniello, S., Somorjai, I., Garcia-Fernàndez, J., Topo, E., D’Aniello, A. (2011) D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J. 25, 10141027.

    • Search Google Scholar
    • Export Citation
  • 10.

    Dermon, C. R., Zikopoulos, B., Panagis, L., Harrison, E., Lancashire, C. L., Mileusnic, R., Stewart, M. G. (2002) Passive avoidance training enhances cell proliferation in 1-day-old chicks. Eur. J. Neurosci. 16, 12671274.

    • Search Google Scholar
    • Export Citation
  • 11.

    Dunlop, D. S., Neidle, A., McHale, D., Dunlop, D. M., Lajtha, A. (1986) The presence of free D-aspartic acid in rodents and man. Biochem. Biophys. Res. Commun. 141, 2732.

    • Search Google Scholar
    • Export Citation
  • 12.

    Errico, F., Rossi, S., Napolitano, F., Catuogno, V., Topo, E., Fisone, G., D’Aniello, A., Centonze, D., Usiello, A. (2008) D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J. Neurosci. 28, 1040410414.

    • Search Google Scholar
    • Export Citation
  • 13.

    Errico, F. et al. (2014) Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals. Transl. Psychiatry 4, e417.

    • Search Google Scholar
    • Export Citation
  • 14.

    Fagg, G. E., Matus, A. (1984) Selective association of N-methyl aspartate and quisqualate types of L-glutamate receptor with brain postsynaptic densities. Proc. Natl. Acad. Sci. USA 81, 68766880.

    • Search Google Scholar
    • Export Citation
  • 15.

    Fujii, N. (2005) D-amino acid in elderly tissues. Biol. Pharm. Bull. 28, 15851589.

  • 16.

    Gibbs, M., Johnston, A. N. B., Mileusnic, R., Crowe, S. F. (2008) A comparison of protocols for passive and discriminative avoidance learning tasks in the domestic chick. Brain Res. Bull. 76, 198207.

    • Search Google Scholar
    • Export Citation
  • 17.

    Gundersen, V., Storm-Mathisen, J. (2000) Chapter II Aspartate–neurochemical evidence for a transmitter role. In: Ottersen, O. P., Storm-Mathisen, J. (eds), Handbook of Chemical Neuroanatomy, vol. 18. Amsterdam, Elsevier. pp. 4562.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hanics, J., Bálint, E., Milanovich, D., Zachar, G., Adám, A., Csillag, A. (2012) Amygdalofugal axon terminals immunoreactive for L-aspartate or L-glutamate in the nucleus accumbens of rats and domestic chickens: a comparative electron microscopic immunocytochemical study combined with anterograde pathway tracing. Cell Tissue Res. 350, 409423.

    • Search Google Scholar
    • Export Citation
  • 19.

    Hanics, J., Teleki, G., Alpár, A., Székely, A. D., Csillag, A. (2016) Multiple amygdaloid divisions of arcopallium send convergent projections to the nucleus accumbens and neighboring subpallial amyg dala regions in the domestic chicken: a selective pathway tracing and reconstruction study. Brain Struct. Funct. 222, 301315.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hashimoto, A., Kumashiro, S., Nishikawa, T., Oka, T., Takahashi, K., Mito, T., Takashima, S., Doi, N., Mizutani, Y., Yamazaki, T., Kaneko, T., Ootomo, E. (1993) Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J. Neurochem. 61, 348351.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hashimoto, A., Oka, T., Nishikawa, T. (1995) Anatomical distribution and postnatal changes in endogenous free D-Aspartate and D-Serine in rat-brain and periphery. Eur. J. Neurosci. 7, 16571663.

    • Search Google Scholar
    • Export Citation
  • 22.

    Horn, G. (2004) Pathways of the past: the imprint of memory. Nat. Rev. Neurosci. 5, 108120.

  • 23.

    Ito, T., Hayashida, M., Kobayashi, S., Muto, N., Hayashi, A., Yoshimura, T., Mori, H. (2016) Serine racemase is involved in D-aspartate biosynthesis. J. Biochem. 160, 345353.

    • Search Google Scholar
    • Export Citation
  • 24.

    Matsushima, T., Izawa, E.-I., Yanagihara, S. (2001) D1-receptor dependent synaptic potentiation in the basal ganglia of quail chick. NeuroReport 12, 28312837.

    • Search Google Scholar
    • Export Citation
  • 25.

    McCabe, B. J. (2013) Imprinting. Interdiscip. Rev. Cogn. Sci. 4, 375390.

  • 26.

    Mezey, S., Krivokuca, D., Balint, E., Adorjan, A., Zachar, G., Csillag, A. (2012) Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100116.

    • Search Google Scholar
    • Export Citation
  • 27.

    Miller J. A. (1950) Do tumor proteins contain D-amino acids? A review of the controversy. Cancer Res. 10, 6572.

  • 28.

    Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S., Cotman, C. W. (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260, 538540.

    • Search Google Scholar
    • Export Citation
  • 29.

    Nakamori, T., Maekawa, F., Sato, K., Tanaka, K., Ohki-Hamazaki, H. (2013) Neural basis of imprinting behavior in chicks. Dev. Growth Differ. 55, 198206.

    • Search Google Scholar
    • Export Citation
  • 30.

    Neidle, A., Dunlop, D. S. (1990) Developmental changes in free D-aspartic acid in the chicken embryo and in the neonatal rat. Life Sci. 46, 15171522.

    • Search Google Scholar
    • Export Citation
  • 31.

    Nuzzo, T. et al. (2017) Decreased free D-aspartate levels are linked to enhanced D-aspartate oxidase activity in the dorsolateral prefrontal cortex of schizophrenia patients. npj Schizophrenia 3, 16.

    • Search Google Scholar
    • Export Citation
  • 32.

    Puelles, L. (2007) The chick brain in stereotaxic coordinates. Academic Press, San Diego.

  • 33.

    Punzo, D., Errico, F., Cristino, L., Sacchi, S., Keller, S., Belardo, C., Luongo, L., Nuzzo, T., Imperatore, R., Florio, E., De Novellis, V., Affinito, O., Migliarini, S., Maddaloni, G., Sisalli, M. J., Pasqualetti, M., Pollegioni, L., Maione, S., Chiariotti, L., Usiello, A. (2016) Age-related changes in D-Aspartate oxidase promoter methylation control extracellular D-Aspartate levels and prevent precocious cell death during brain aging. J. Neurosci. 36, 30643078.

    • Search Google Scholar
    • Export Citation
  • 34.

    Radzishevsky, I., Sason, H., Wolosker, H. (2013) D-serine: physiology and pathology. Curr. Opin. Clin. Nutr. Metab. Care. 16, 7275.

  • 35.

    Reiner, A. (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377414.

  • 36.

    Rose, S. P. (2000) God’s organism? The chick as a model system for memory studies. Learn. Mem. 7, 117.

  • 37.

    Schell, M. J., Cooper, O. B., Snyder, S. H. (1997) D-aspartate localizations imply neuronal and neuroendocrine roles. Proc. Natl. Acad. Sci. USA 94, 20132018.

    • Search Google Scholar
    • Export Citation
  • 38.

    Stewart, M. G., Rusakov, D. A. (1995) Morphological changes associated with stages of memory formation in the chick following passive avoidance training. Behav. Brain Res. 66, 2128.

    • Search Google Scholar
    • Export Citation
  • 39.

    Topo, E., Soricelli, A., Di Maio, A., D’Aniello, E., Di Fiore, M. M., D’Aniello, A. (2010) Evidence for the involvement of D-aspartic acid in learning and memory of rat. Amino acids 38, 15611569.

    • Search Google Scholar
    • Export Citation
  • 40.

    Venero, C., Sandi, C. (1997) Effects of NMDA and AMPA receptor antagonists on corticosterone facilitation of long-term memory in the chick. Eur. J. Neurosci. 9, 19231928.

    • Search Google Scholar
    • Export Citation
  • 41.

    Wagner, Z., Tabi, T., Zachar, G., Csillag, A., Szoko, E. (2011) Comparison of quantitative performance of three fluorescence labels in CE/LIF analysis of aspartate and glutamate in brain microdialysate. Electrophoresis 32, 28162822.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wagner, Z., Tabi, T., Jako, T., Zachar, G., Csillag, A., Szoko, E. (2012) Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal. Bioanal. Chem. 404, 23632368.

    • Search Google Scholar
    • Export Citation
  • 43.

    Wolosker, H., D’Aniello, A., Snyder, S. H. (2000) D-aspartate disposition in neuronal and endocrine tissues: ontogeny, biosynthesis and release. Neuroscience 100, 183189.

    • Search Google Scholar
    • Export Citation
  • 44.

    Yamanaka, M., Miyoshi, Y., Ohide, H., Hamase, K., Konno, R. (2012) D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity. Amino Acids 43, 18111821.

    • Search Google Scholar
    • Export Citation
  • 45.

    Zachar, G., Wagner, Z., Tabi, T., Balint, E., Szoko, E., Csillag, A. (2012) Differential changes of extracellular aspartate and glutamate in the striatum of domestic chicken evoked by high potassium or distress: An in vivo microdialysis study. Neurochem. Res. 37, 17301737.

    • Search Google Scholar
    • Export Citation
  • 46.

    Zachar, G., Tóth, A. S., Balogh, M., Csillag, A. (2017) Effect of nucleus accumbens lesions on socially motivated behaviour of young domestic chicks. Eur. J. Neurosci. 45, 16061612.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editorial Board

    1. Csányi, Vilmos (Göd)
    1. Dudits, Dénes (Szeged)
    1. Falus, András (Budapest)
    1. Fischer, Ernő (Pécs)
    1. Gábriel, Róbert (Pécs)
    1. Gulya, Károly (Szeged)
    1. Gulyás, Balázs (Stockholm)
    1. Hajós, Ferenc (Budapest)
    1. Hámori, József (Budapest)
    1. Heszky, László (Gödöllő)
    1. Hideg, Éva (Szeged)
    1. E. Ito (Sanuki)
    1. Janda, Tibor (Martonvásár)
    1. Kavanaugh, Michael P. (Missoula)
    1. Kása, Péter (Szeged)
    1. Klein, Éva (Stockholm)
    1. Kovács, János (Budapest)
    1. Brigitte Mauch-Mani (Neuchâtel)
    1. Nässel, Dick R. (Stockholm)
    1. Nemcsók, János (Szeged)
    1. Péczely, Péter (Gödöllő)
    1. Roberts, D. F. (Newcastle-upon-Tyne)
    1. Sakharov, Dimitri A. (Moscow)
    1. Singh, Meharvan (Fort Worth)
    1. Sipiczky, Mátyás (Debrecen)
    1. Szeberényi, József (Pécs)
    1. Székely, György (Debrecen)
    1. Tari, Irma (Szeged)
    1. Vágvölgyi, Csaba (Szeged),
    1. L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)