View More View Less
  • 1 Szent István University, Páter Károly út 1, Gödöllő H-2100, Hungary
Restricted access

The protective role of arbuscular mycorrhizal fungi (AMF) against the phytopathogen Clavibacter michiganensis subsp. michiganensis (Cmm) was examined in tomato plants. Seven different AMF isolates were used to determine which ones were able to induce effectively resistance against Cmm. Stems of seven-week tomato plants were infected with Cmm, then a disease severity index (DSI) was determined during the next three weeks. In addition to different responses to mycorrhizal inoculation, three levels of responses to the bacterial disease were recognized in treatments. Plants inoculated with Rhizophagus irregularis (Ri) showed both the highest colonization and the highest induced resistance to Cmm while the effect of Funneliformis mosseae, Gigaspora margarita and Claroideoglomus claroideum on mycorrhizal colonization and on the induced resistance were intermediate and high, respectively. Subsequently, Ri was chosen to inoculate ethylene-insensitive tomato mutant line Never ripe (Nr) and its background (Pearson) to investigate the possible role of ethylene (ET) in the mycorrhiza-induced resistance (MIR). The results showed that Ri could induce systemic resistance against Cmm in the Pearson background, whereas ET-insensitivity in Nr plants impaired MIR. These results suggest that ET is required for Ri-induced resistance against Cmm. To our knowledge, this is the first study to examine the effect of different AMF isolates on the response of tomato plants to Cmm and involvement of ET in MIR against Cmm.

  • 1.

    Abeles, F. B., Morgan, P. W., Saltveit, M. E. (1992)Ethylene in Plant Biology. Ed. 2. Academic Press, New York.

  • 2.

    Adie, B., Chico, J. M., Rubio-Somoza, I., Solano, R. (2007) Modulation of plant defenses by ethylene. J. Plant Growth Regul. 26, 160177.

    • Search Google Scholar
    • Export Citation
  • 3.

    Arshad, M., Frankenberger, W. T. (2002) Ethylene, Agricultural Sources and Applications. New York, Kluwer/Plenum.

  • 4.

    Balaji, V., Mayrose, M., Sherf, O., Jacob-Hirsch, J., Eichenlaub, R., Iraki, N., Manulis-Sasson, S., Rechavi, G., Barash, I., Sessa, G. (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol. 146, 17971809.

    • Search Google Scholar
    • Export Citation
  • 5.

    Ballhorn, D. J., Younginger, B. S., Kautz, S. (2014) An aboveground pathogen inhibits belowground rhizobia and arbuscular mycorrhizal fungi in Phaseolus vulgaris. BMC Plant Biol. 14, 321.

    • Search Google Scholar
    • Export Citation
  • 6.

    Broekaert, W. F., Delaure, S. L., De Bolle, M. F. C., Cammuel, B. P. A. (2006) The role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44, 393416.

    • Search Google Scholar
    • Export Citation
  • 7.

    Davis, M. J., Gillespie, J. A., Vidaver, A. K., Harris, R. W. (1984) Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. Int. J. Syst. Bacteriol. 34, 107117.

    • Search Google Scholar
    • Export Citation
  • 8.

    Ellis, C., Turner, J. G. (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 10251033.

    • Search Google Scholar
    • Export Citation
  • 9.

    Filion, M., ST-Arnaud, M., Fortin, J. A. (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141, 525533.

    • Search Google Scholar
    • Export Citation
  • 10.

    Fiorilli, V., Catoni, M., Francia, D., Cardinale, F., Lanfranco, L. (2011). The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J. Plant Pathol. 93, 237242.

    • Search Google Scholar
    • Export Citation
  • 11.

    Fracetto, G. G. M., Peres, L. E. P., Lambais, M. R. (2017) Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development. Arch. Microbiol. 199, 787798.

    • Search Google Scholar
    • Export Citation
  • 12.

    Fritz, M., Jakobsen, I., Langkjaer, M. F., Thordal-Christensen, H., Pons-Kühnemann, J. (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16, 413419.

    • Search Google Scholar
    • Export Citation
  • 13.

    Giovannetti, M., Mosse, B. (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84, 489500.

    • Search Google Scholar
    • Export Citation
  • 14.

    Hewitt, E. J. (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. 2nd edn. London: Commonwealth Agricultural Bureau.

    • Search Google Scholar
    • Export Citation
  • 15.

    Hossain, M. M., Sultana, F., Kubota, M., Hyakumachi, M. (2008) Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promotingfungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304, 227239.

    • Search Google Scholar
    • Export Citation
  • 16.

    Iavicoli, A., Boutet, E., Buchala, A., Métraux, J. P. (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16, 851858.

    • Search Google Scholar
    • Export Citation
  • 17.

    Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., Pozo, M. J. (2012) Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38, 651664.

    • Search Google Scholar
    • Export Citation
  • 18.

    Khatabi, B., Schäfer, P. (2012) Ethylene in mutualistic symbioses. Plant Signal. Behav. 7, 16341638.

  • 19.

    Korolev, N., David, D. R., Elad, Y. (2008) The role of phytohormones in basal resistance and Trichoderma induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biocontrol 53, 667683.

    • Search Google Scholar
    • Export Citation
  • 20.

    Lanahan, M. B., Yen, H. C., Giovannoni, J. J., Klee, H. J. (1994) The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6, 521530.

    • Search Google Scholar
    • Export Citation
  • 21.

    Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., Harrison, M. J. (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J. 50, 529544.

    • Search Google Scholar
    • Export Citation
  • 22.

    López-Ráez, J. A., Verhage, A., Fernández, I., García, J. M., Azcón-Aguilar, C., Flors, V., Pozo, M. J. (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot. 61, 25892601.

    • Search Google Scholar
    • Export Citation
  • 23.

    Maffei, G., Miozzi, L., Fiorilli, V., Novero, M., Lanfranco, L., Accotto, G. P. (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24, 179186.

    • Search Google Scholar
    • Export Citation
  • 24.

    Møller, K., Kristensen, K., Yohalem, D., Larsen, J. (2009) Biological management of gray mold in pot roses by coinoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol. Control 49, 120125.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mora-Romero, G. A., Gonzalez-Ortiz, M. A., Quiroz-Figueroa, F., Calderon-Vazquez, C. L., Medina-Godoy, S., Maldonado-Mendoza, I., Arroyo-Becerra, A., Perez-Torres, A., Alatorre-Cobos, F., Sanchez, F., Lopez-Meyer, M. (2015) PvLOX2 silencing in common bean roots impairs arbuscular mycorrhiza-induced resistance without affecting symbiosis establishment. Funct. Plant Biol. 42, 1830.

    • Search Google Scholar
    • Export Citation
  • 26.

    Nair, A., Kolet, S. P., Thulasiram, H. V., Bhargava, S. (2015) Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol. 17, 625631.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nair, A., Kolet, S. P., Thulasiram, H. V., Bhargava, S. (2015) Role of methyl jasmonate in the expression of mycorrhizal induced resistance against Fusarium oxysporum in tomato plants. Physiol. Mol. Plant Pathol. 92, 139145.

    • Search Google Scholar
    • Export Citation
  • 28.

    Plenchette, C., Fortin, J. A., Furlan, V. (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility: I. Mycorrhizal dependency under field conditions. Plant Soil 70, 199209.

    • Search Google Scholar
    • Export Citation
  • 29.

    Pieterse, C. M., Van Loon, L. C. (1999) Salicylic-acid-independent plant defence pathways. Trends Plant Sci. 4, 5258.

  • 30.

    Pozo, M. J., Jung, S. C., López-Ráez, J. A., Azcón-Aguilar, C. (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: The role of plant defence mechanisms. In: Koltai, H., Kapulnik, Y. (eds), Arbuscular Mycorrhizas: Physiology and Function. Springer Netherlands, Dordrecht, pp. 193207.

    • Search Google Scholar
    • Export Citation
  • 31.

    de la Providencia, I. E., de Souza, F. A., Fernández, F., Delmas, N. S., Declerck, S. (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol. 165, 261271.

    • Search Google Scholar
    • Export Citation
  • 32.

    Raupach, G. S., Liu, L., Murphy, J. F., Tuzun, S. T., Kloepper, J. W. (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growthpromoting rhizobacteria (PGPR). Plant Dis. 80, 891894.

    • Search Google Scholar
    • Export Citation
  • 33.

    Santos, R. T. d. l., Rosales, N. M., Ocampo, J. A., García-Garrido, J. M. (2016) Ethylene alleviates the suppressive effect of phosphate on arbuscular mycorrhiza formation. J. Plant Growth Regul. 35, 611617.

    • Search Google Scholar
    • Export Citation
  • 34.

    Savidor, A., Teper, D., Gartemann, K. H., Eichenlaub, R., Chalupowicz, L., Manulis-Sasson, S., Barash, I., Tews, H., Mayer, K., Giannone, R. J., Hettich, R. L., Sessa, G. (2012) The Clavibacter michiganensis subsp. michiganensis–Tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection. J. Proteome Res. 11, 736750.

    • Search Google Scholar
    • Export Citation
  • 35.

    Savidor, A., Chalupowicz, L., Teper, D., Gartemann, K. H., Eichenlaub, R., Manulis-Sasson, S., Barash, I., Sessa, G. (2014) Clavibacter michiganensis subsp. michiganensis Vatr1 and Vatr2 transcriptional regulators are required for virulence in tomato. Mol. Plant Microbe Interact. 27, 10351047.

    • Search Google Scholar
    • Export Citation
  • 36.

    Schenk, P. M., Kazan, K., Wilson, L., Anderson, J. P., Richmond, T., Somerville, S. C., Manners, J. M. (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl Acad. Sci. USA 97, 1165511660.

    • Search Google Scholar
    • Export Citation
  • 37.

    Silvani, V. A., Bidondo, L. F., Bompadre, M. J., Colombo, R. P., Pérgola, M., Bompadre, A., Fracchia, S., Godeas, A. (2014) Growth dynamics of geographically different arbuscular mycorrhizal fungal isolates belonging to the ‘Rhizophagus clade’ under monoxenic conditions. Mycologia 106, 963975.

    • Search Google Scholar
    • Export Citation
  • 38.

    Song, Y., Chen, D., Lu, K., Sun, Z., Zeng, R. (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science 6, 113.

    • Search Google Scholar
    • Export Citation
  • 39.

    Song, Y. Y., Zeng, R., Sen, Xu, J. F., Li, J., Shen, X., Yihdego, W. G. (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 5.

    • Search Google Scholar
    • Export Citation
  • 40.

    Van Loon, L. C., Geraats, B. P. J., Linthorst, H. J. M. (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11, 184191.

    • Search Google Scholar
    • Export Citation
  • 41.

    Vierheilig, H., Coughlan, A. P., Wyss, U., Piché, Y. (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64, 50045007.

    • Search Google Scholar
    • Export Citation
  • 42.

    Weller, D. M., Mavrodi, D. V., Van Pelt, J. A., Pieterse, C. M. J., Van Loon, L. C., Bakker, P. A. H. M. (2012) Induced systemic resistance (ISR) in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102, 403412.

    • Search Google Scholar
    • Export Citation
  • 43.

    Yan, Z., Reddy, M. S., Ryu, C.-M., McInroy, J. A., Wilson, M., Kloepper, J. W. (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92, 13291333.

    • Search Google Scholar
    • Export Citation

Editorial Board

      Csányi, Vilmos (Göd)
      Dudits, Dénes (Szeged)
      Falus, András (Budapest)
      Fischer, Ernő (Pécs)
      Gábriel, Róbert (Pécs)
      Gulya, Károly (Szeged)
      Gulyás, Balázs (Stockholm)
      Hajós, Ferenc (Budapest)
      Hámori, József (Budapest)
      Heszky, László (Gödöllő)
      Hideg, Éva (Szeged)
      E. Ito (Sanuki)
      Janda, Tibor (Martonvásár)
      Kavanaugh, Michael P. (Missoula)
      Kása, Péter (Szeged)
      Klein, Éva (Stockholm)
      Kovács, János (Budapest)
      Brigitte Mauch-Mani (Neuchâtel)
      Nässel, Dick R. (Stockholm)
      Nemcsók, János (Szeged)
      Péczely, Péter (Gödöllő)
      Roberts, D. F. (Newcastle-upon-Tyne)
      Sakharov, Dimitri A. (Moscow)
      Singh, Meharvan (Fort Worth)
      Sipiczky, Mátyás (Debrecen)
      Szeberényi, József (Pécs)
      Székely, György (Debrecen)
      Tari, Irma (Szeged)
      Vágvölgyi, Csaba (Szeged),
      L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)