Selenium (Se) is an essential element for animals and humans, but not plants. However, the capacity of some plants to accumulate and transform Se into bioactive compounds has important implications for human nutrition and health. In this study, sunflower (Helianthus annuus) and maize (Zea mays) seedlings were cultivated in soil to investigate the effect of different rates of sodium selenite (1–90 mg kg–1 soil) and sodium selenate (1–30 mg kg–1 soil) on absorption and translocation of Se and sulphur (S). Sodium selenate decreased growth of sunflower roots at all applied rates and of maize roots at the highest rate applied. In contrast, sodium selenite up to 30 mg kg–1 for sunflower and 3 mg kg–1 for maize resulted in increased shoot and root growth. An increase in Se concentration in soil resulted in an increase in Se and a decrease in S accumulation in roots and shoots of both maize and sunflower. Selenium translocation from roots to shoot was higher in sunflower than maize. Root-to-shoot translocation of Se was 5 to 30 times greater in sunflower and 0.4 to 3 times greater in maize in the sodium selenate than sodium selenite treatments. Sunflower, as a Se-hyperaccumulator with up to 1.8 g kg–1 in shoots (with no significant decrease in shoot biomass) can be a valuable plant in biofortification to improve animal/human nutrition, as well as in phytoremediation of contaminated sites to restore ecosystem services.
Boyd, R. (2011) Selenium stories. Nat. Chem. 3, 570.
Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., Knott, P., McGrath, S. P., Meacham, M. C., Norman, K., Mowat, H., Scott, P., Stroud, J. L., Tovey, M., Tucker, M., White, P. J., Young, S. D., Zhao, F.-J. (2010) Selenium biofortification of highyielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant. Soil. 332, 5–18.
Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., Hawkesford, M. J., McGrath, S. P., Zhao, F. J., Breward, N., Harriman, M., Tucker, M. (2006) Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 65, 169–181.
Carvalho, K. M., Gallardo-Williams, M. T., Benson, R. F., Martin, D. F. (2003) Effects of selenium supplementation on four agricultural crops. J. Agric. Food Chem. 51, 704–709.
Chen, C. C., Sung, J. M. (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under suboptimal temperature. Physiol. Plant. 111, 9–16.
de Souza, M. P., Chu, D., Zhao, M., Zayed, A. M., Ruzin, S. E., Schichnes, D., Terry, N. (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 119, 565–573.
Djanaguiraman, M., Durga, D. D., Shanker, A. K., Sheeba, J. A., Bangarusamy, U. (2005) Selenium, an antioxidative protectant in soybean during senescence. Plant Soil 272, 77–86.
Duran, P., Acuna, J. J., Jorquera, M. A., Azcon, R., Paredes, C., Rengel, Z., de la Luz Mora, M. (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils 50, 983–990.
Facompre, N., El-Bayoumy, K. (2009) Potential stages for prostate cancer prevention with selenium: implications for cancer survivors. Cancer Res. 69, 2699–2703.
FAO (1998) World reference base for soil resources. Rome, Italy.
Fernández-Martínez, Charlet, L. (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Bio. 8, 81–110.
Fordyce, F. M. (2012) Selenium deficiency and toxicity in the environment. In: Selinus, O., Alloway, B. J., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., Smedley, P. (eds) Essentials of Medical Geology. Revised Edition. Springer, pp. 375–416.
Galinha, C., Sanchez-Martinez, M., Pacheco, A. M. G., Freitas, Md. C., Coutinho, J., Macas, B., Almeida, A. S., Perez-Corona, M. T., Madrid, Y., Wolterbeek, H. T. (2015) Characterization of selenium- enriched wheat by agronomic biofortification. J. Food Sci. Technol. 52, 4236–4245.
Germ, M., Stibilj, V., Osvald, J., Kreft, I. (2007) Effect of selenium foliar application on chicory (Cichorium intybus L.). J. Agric. Food Chem. 55, 795–798.
Govasmark, E., Salbu, B. (2011) Translocation and re-translocation of selenium taken up from nutrient solution during vegetative growth in spring wheat. J. Sci. Food Agric. 91, 1367–1372.
Hasanuzzaman, M., Hossain, M. A., Masayuki, F. (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant Sci. 5, 354–375.
Hartikainen, H., Ekholm, P., Piironen, V., Xue, T., Koivu, T., Yli-Halla, M. (1997) Quality of the ryegrass and lettuce yields as affected by selenium fertilization. Agric. Food Sci. Finl. 6, 381–387.
Hartikainen, H., Xue, T. (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J. Environ. Qual. 28, 1372–1375.
Hawrylak-Nowak, B. (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 70, 149–157.
Ingh, M. (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Env. Res. 3, 1–18.
Kovács, B., Győri, Z., Prokisch, J., Loch, J., Dániel, P. (1996) A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Commun. Soil Sci. Plant Anal. 27, 1177–1198.
Longchamp, M., Angeli, N., Castrec-Rouelle, M. (2011) Uptake of selenate and/or selenite in hydroponically grown maize plants and interaction with some essential elements (calcium, magnesium, zinc, iron, manganese, and copper). In: Bañuelos, G. S., Lin, Z.-Q., Yin Xuebin, Duan Ning (eds) Selenium (Global perspectives of impacts on humans, animals and the environment). University of Science and Technology of China Press, Hefei, China, pp. 83–89.
Lyi, S. M., Heller, L. I., Rutzke, M., Welch, R. M., Kochian, L. V., Li, L. (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol. 138, 409–420.
Lyons, G. H., Genc, Y., Soole, K., Stangoulis, J., Liu, F., Graham, R. D. (2009) Selenium increases seed production in Brassica. Plant Soil 318, 73–80.
Lyons, G. H., Lewis, J., Lorimer, M. F., Holloway, R. E., Brace, D. M., Stangoulis, J. C., Graham, R. D. (2004) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. J. Food Agric. Environ. 2, 171–178.
Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., Zou, C. (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nutr. 14, 459–470.
Méplan, C., Hesketh, J. (2012) The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagen. 27, 177–186.
Nagy, K., Lévai, L., Kovács, B. (2010) The effect of selenium supply on maize and sunflower. Növénytermelés 59, 61–84. (In Hungarian)
Pennanen, A., Xue, T., Hartikainen, H. (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J. Appl. Bot. 76, 66–76.
Persans, M. W., Salt, D. E. (2000) Possible molecular mechanisms involved in nickel, zinc, and selenium hyperaccumulation in plants. Biotechnol. Eng. Rev. 17, 389–413.
Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M., Schiavon, M. (2009) Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 12, 267–274.
Poblaciones, M. J., Rodrigo, S., Santamaría, O., Chen, Y., McGrath, S. P. (2014) Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. J. Sci. Food Agric. 94, 1101–1106.
Poblaciones, M. J., Rodrigo, S. M., Santamaría, O. (2013) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol. Trace Elem. Res. 151, 132–137.
Puskás-Preszner, A., Kovács, B. (2009) Effect of molybdenum treatment in a long-term field experiment influencing on the element uptake of plant and molybdenum fractions of soil. Agrártudományi Közlemények 36, 117–122. (In Hungarian)
Rayman, M. P. (2008) Food-chain selenium and human health: emphasis on intake. Br. J. Nutr. 100, 254–268.
Sajedi, N., Ardakani, M., Madani, H., Naderi, A., Miransari, M. (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol. Mol. Biol. Plants 17, 215–222.
Shibagaki, N., Rose, A., McDermott, J. P., Fujiwara, T., Hayashi, H., Yoneyama, T., Davies, J. P. (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 29, 475–486.
Singh, M., Singh, H., Bhandari, D. K. (1980) Interaction of selenium and sulphur on the growth and chemical composition of raya. Soil Science 129, 238–244.
Tamaoki, M., Freeman, J. L., Pilon-Smits, E. A. H. (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physio. 146, 1219–1230.
Terry, N., Zayed, A. M., de Souza, M. P., Tarun, A. S. (2000) Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 401–432.
Turakainen, M. (2007) Selenium and its effects on growth, yield and tuber quality in potato. University of Helsinki, Helsinki, PhD. Thesis.
Turakainen, M., Hartikainen, H., Ekholm, P., Seppänen, M. M. (2006) Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum) tubers supplemented with selenate. Agric. Food Chem. 54, 8617–8622.
White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., Meacham, M. C., Mead, A., Harriman, M., Trueman, L. J., Smith, B. M., Thomas, B., Broadley, M. R. (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 55, 1927–1937.
Xue, T., Hartikainen, H., Piironen, V. (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237, 55–61.
Zayed, A., Lytle, C. M., Terry, N. (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206, 284–292.
Zayed, A., Terry, N. (1992) Selenium volatilization as influenced by sulfate supply. J. Plant Physiol. 140, 646–652.