View More View Less
  • 1 University of Debrecen, H-4032 Debrecen Böszörményi út 138, Hungary
  • 2 University of Debrecen, H-4032 Debrecen Böszörményi út 138, Hungary
Restricted access

Selenium (Se) is an essential element for animals and humans, but not plants. However, the capacity of some plants to accumulate and transform Se into bioactive compounds has important implications for human nutrition and health. In this study, sunflower (Helianthus annuus) and maize (Zea mays) seedlings were cultivated in soil to investigate the effect of different rates of sodium selenite (1–90 mg kg–1 soil) and sodium selenate (1–30 mg kg–1 soil) on absorption and translocation of Se and sulphur (S). Sodium selenate decreased growth of sunflower roots at all applied rates and of maize roots at the highest rate applied. In contrast, sodium selenite up to 30 mg kg–1 for sunflower and 3 mg kg–1 for maize resulted in increased shoot and root growth. An increase in Se concentration in soil resulted in an increase in Se and a decrease in S accumulation in roots and shoots of both maize and sunflower. Selenium translocation from roots to shoot was higher in sunflower than maize. Root-to-shoot translocation of Se was 5 to 30 times greater in sunflower and 0.4 to 3 times greater in maize in the sodium selenate than sodium selenite treatments. Sunflower, as a Se-hyperaccumulator with up to 1.8 g kg–1 in shoots (with no significant decrease in shoot biomass) can be a valuable plant in biofortification to improve animal/human nutrition, as well as in phytoremediation of contaminated sites to restore ecosystem services.

  • 1.

    Boyd, R. (2011) Selenium stories. Nat. Chem. 3, 570.

  • 2.

    Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., Knott, P., McGrath, S. P., Meacham, M. C., Norman, K., Mowat, H., Scott, P., Stroud, J. L., Tovey, M., Tucker, M., White, P. J., Young, S. D., Zhao, F.-J. (2010) Selenium biofortification of highyielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant. Soil. 332, 518.

    • Search Google Scholar
    • Export Citation
  • 3.

    Broadley, M. R., White, P. J., Bryson, R. J., Meacham, M. C., Bowen, H. C., Johnson, S. E., Hawkesford, M. J., McGrath, S. P., Zhao, F. J., Breward, N., Harriman, M., Tucker, M. (2006) Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 65, 169181.

    • Search Google Scholar
    • Export Citation
  • 4.

    Carvalho, K. M., Gallardo-Williams, M. T., Benson, R. F., Martin, D. F. (2003) Effects of selenium supplementation on four agricultural crops. J. Agric. Food Chem. 51, 704709.

    • Search Google Scholar
    • Export Citation
  • 5.

    Chen, C. C., Sung, J. M. (2001) Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under suboptimal temperature. Physiol. Plant. 111, 916.

    • Search Google Scholar
    • Export Citation
  • 6.

    de Souza, M. P., Chu, D., Zhao, M., Zayed, A. M., Ruzin, S. E., Schichnes, D., Terry, N. (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol. 119, 565573.

    • Search Google Scholar
    • Export Citation
  • 7.

    Djanaguiraman, M., Durga, D. D., Shanker, A. K., Sheeba, J. A., Bangarusamy, U. (2005) Selenium, an antioxidative protectant in soybean during senescence. Plant Soil 272, 7786.

    • Search Google Scholar
    • Export Citation
  • 8.

    Duran, P., Acuna, J. J., Jorquera, M. A., Azcon, R., Paredes, C., Rengel, Z., de la Luz Mora, M. (2014) Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils 50, 983990.

    • Search Google Scholar
    • Export Citation
  • 9.

    Facompre, N., El-Bayoumy, K. (2009) Potential stages for prostate cancer prevention with selenium: implications for cancer survivors. Cancer Res. 69, 26992703.

    • Search Google Scholar
    • Export Citation
  • 10.

    FAO (1998) World reference base for soil resources. Rome, Italy.

  • 11.

    Fernández-Martínez, Charlet, L. (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev. Environ. Sci. Bio. 8, 81110.

    • Search Google Scholar
    • Export Citation
  • 12.

    Fordyce, F. M. (2012) Selenium deficiency and toxicity in the environment. In: Selinus, O., Alloway, B. J., Centeno, J. A., Finkelman, R. B., Fuge, R., Lindh, U., Smedley, P. (eds) Essentials of Medical Geology. Revised Edition. Springer, pp. 375416.

    • Search Google Scholar
    • Export Citation
  • 13.

    Galinha, C., Sanchez-Martinez, M., Pacheco, A. M. G., Freitas, Md. C., Coutinho, J., Macas, B., Almeida, A. S., Perez-Corona, M. T., Madrid, Y., Wolterbeek, H. T. (2015) Characterization of selenium- enriched wheat by agronomic biofortification. J. Food Sci. Technol. 52, 42364245.

    • Search Google Scholar
    • Export Citation
  • 14.

    Germ, M., Stibilj, V., Osvald, J., Kreft, I. (2007) Effect of selenium foliar application on chicory (Cichorium intybus L.). J. Agric. Food Chem. 55, 795798.

    • Search Google Scholar
    • Export Citation
  • 15.

    Govasmark, E., Salbu, B. (2011) Translocation and re-translocation of selenium taken up from nutrient solution during vegetative growth in spring wheat. J. Sci. Food Agric. 91, 13671372.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hasanuzzaman, M., Hossain, M. A., Masayuki, F. (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant Sci. 5, 354375.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hartikainen, H., Ekholm, P., Piironen, V., Xue, T., Koivu, T., Yli-Halla, M. (1997) Quality of the ryegrass and lettuce yields as affected by selenium fertilization. Agric. Food Sci. Finl. 6, 381387.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hartikainen, H., Xue, T. (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J. Environ. Qual. 28, 13721375.

    • Search Google Scholar
    • Export Citation
  • 19.

    Hawrylak-Nowak, B. (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul. 70, 149157.

    • Search Google Scholar
    • Export Citation
  • 20.

    Ingh, M. (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Env. Res. 3, 118.

  • 21.

    Kovács, B., Győri, Z., Prokisch, J., Loch, J., Dániel, P. (1996) A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Commun. Soil Sci. Plant Anal. 27, 11771198.

    • Search Google Scholar
    • Export Citation
  • 22.

    Longchamp, M., Angeli, N., Castrec-Rouelle, M. (2011) Uptake of selenate and/or selenite in hydroponically grown maize plants and interaction with some essential elements (calcium, magnesium, zinc, iron, manganese, and copper). In: Bañuelos, G. S., Lin, Z.-Q., Yin Xuebin, Duan Ning (eds) Selenium (Global perspectives of impacts on humans, animals and the environment). University of Science and Technology of China Press, Hefei, China, pp. 8389.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lyi, S. M., Heller, L. I., Rutzke, M., Welch, R. M., Kochian, L. V., Li, L. (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol. 138, 409420.

    • Search Google Scholar
    • Export Citation
  • 24.

    Lyons, G. H., Genc, Y., Soole, K., Stangoulis, J., Liu, F., Graham, R. D. (2009) Selenium increases seed production in Brassica. Plant Soil 318, 7380.

    • Search Google Scholar
    • Export Citation
  • 25.

    Lyons, G. H., Lewis, J., Lorimer, M. F., Holloway, R. E., Brace, D. M., Stangoulis, J. C., Graham, R. D. (2004) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. J. Food Agric. Environ. 2, 171178.

    • Search Google Scholar
    • Export Citation
  • 26.

    Mao, H., Wang, J., Wang, Z., Zan, Y., Lyons, G., Zou, C. (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant Nutr. 14, 459470.

    • Search Google Scholar
    • Export Citation
  • 27.

    Méplan, C., Hesketh, J. (2012) The influence of selenium and selenoprotein gene variants on colorectal cancer risk. Mutagen. 27, 177186.

    • Search Google Scholar
    • Export Citation
  • 28.

    Nagy, K., Lévai, L., Kovács, B. (2010) The effect of selenium supply on maize and sunflower. Növénytermelés 59, 6184. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • 29.

    Pennanen, A., Xue, T., Hartikainen, H. (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J. Appl. Bot. 76, 6676.

    • Search Google Scholar
    • Export Citation
  • 30.

    Persans, M. W., Salt, D. E. (2000) Possible molecular mechanisms involved in nickel, zinc, and selenium hyperaccumulation in plants. Biotechnol. Eng. Rev. 17, 389413.

    • Search Google Scholar
    • Export Citation
  • 31.

    Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M., Schiavon, M. (2009) Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 12, 267274.

    • Search Google Scholar
    • Export Citation
  • 32.

    Poblaciones, M. J., Rodrigo, S., Santamaría, O., Chen, Y., McGrath, S. P. (2014) Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. J. Sci. Food Agric. 94, 11011106.

    • Search Google Scholar
    • Export Citation
  • 33.

    Poblaciones, M. J., Rodrigo, S. M., Santamaría, O. (2013) Evaluation of the potential of peas (Pisum sativum L.) to be used in selenium biofortification programs under Mediterranean conditions. Biol. Trace Elem. Res. 151, 132137.

    • Search Google Scholar
    • Export Citation
  • 34.

    Puskás-Preszner, A., Kovács, B. (2009) Effect of molybdenum treatment in a long-term field experiment influencing on the element uptake of plant and molybdenum fractions of soil. Agrártudományi Közlemények 36, 117122. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • 35.

    Rayman, M. P. (2008) Food-chain selenium and human health: emphasis on intake. Br. J. Nutr. 100, 254268.

  • 36.

    Sajedi, N., Ardakani, M., Madani, H., Naderi, A., Miransari, M. (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol. Mol. Biol. Plants 17, 215222.

    • Search Google Scholar
    • Export Citation
  • 37.

    Shibagaki, N., Rose, A., McDermott, J. P., Fujiwara, T., Hayashi, H., Yoneyama, T., Davies, J. P. (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 29, 475486.

    • Search Google Scholar
    • Export Citation
  • 38.

    Singh, M., Singh, H., Bhandari, D. K. (1980) Interaction of selenium and sulphur on the growth and chemical composition of raya. Soil Science 129, 238244.

    • Search Google Scholar
    • Export Citation
  • 39.

    Tamaoki, M., Freeman, J. L., Pilon-Smits, E. A. H. (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physio. 146, 12191230.

    • Search Google Scholar
    • Export Citation
  • 40.

    Terry, N., Zayed, A. M., de Souza, M. P., Tarun, A. S. (2000) Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 401432.

    • Search Google Scholar
    • Export Citation
  • 41.

    Turakainen, M. (2007) Selenium and its effects on growth, yield and tuber quality in potato. University of Helsinki, Helsinki, PhD. Thesis.

  • 42.

    Turakainen, M., Hartikainen, H., Ekholm, P., Seppänen, M. M. (2006) Distribution of selenium in different biochemical fractions and raw darkening degree of potato (Solanum tuberosum) tubers supplemented with selenate. Agric. Food Chem. 54, 86178622.

    • Search Google Scholar
    • Export Citation
  • 43.

    White, P. J., Bowen, H. C., Parmaguru, P., Fritz, M., Spracklen, W. P., Spiby, R. E., Meacham, M. C., Mead, A., Harriman, M., Trueman, L. J., Smith, B. M., Thomas, B., Broadley, M. R. (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 55, 19271937.

    • Search Google Scholar
    • Export Citation
  • 44.

    Xue, T., Hartikainen, H., Piironen, V. (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237, 5561.

    • Search Google Scholar
    • Export Citation
  • 45.

    Zayed, A., Lytle, C. M., Terry, N. (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206, 284292.

    • Search Google Scholar
    • Export Citation
  • 46.

    Zayed, A., Terry, N. (1992) Selenium volatilization as influenced by sulfate supply. J. Plant Physiol. 140, 646652.