View More View Less
  • 1 Northeast Agricultural University, Harbin, China
Restricted access

Late embryonic proteins (LEA) gene family was abundant mainly in higher plant embryos, which could protect the embryos from the damage caused by abiotic stress, especially drought and salt stresses. In the present study, GmLEA2-1 was cloned from soybean leaf tissue treated by 10% polyethylene glycol 6000 (PEG6000). The results of quantitative real-time PCR (qRT-PCR) revealed a variety of expression patterns of GmLEA2-1 in various tissues of soybean (root, stem, leaf, flower, pod, early embryo and late embryo). GmLEA2-1 gene shared a lower sequence similarity with other typical LEA genes of same group from different species, but similar functions. Overexpression of GmLEA2-1 in transgenic Arabidopsis thaliana conferred tolerance to drought and salt stresses. The fresh weight and dry weight of seedling, the primary root length and the lateral root density of transgenic Arabidopsis plants were higher than those of wild type Arabidopsis (WT) under drought and salt stresses. Cis-acting regulatory elements in the GmLEA2-1 promoter were also predicted. These data demonstrate that GmLEA2-1 protein play an important role in improving drought and salt tolerance in plants.

  • 1.

    Abe, H., Urao, T. Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 6378.

    • Search Google Scholar
    • Export Citation
  • 2.

    Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D., Shinozaki, K. (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 18591868.

    • Search Google Scholar
    • Export Citation
  • 3.

    Banerjee, A., Roychoudhury, A. (2016) Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. Plant Growth Reg. 79, 117.

    • Search Google Scholar
    • Export Citation
  • 4.

    Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, Campos, F., Covarrubias, A. A. (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol. 148, 624.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bhatnagar-Mathur, P., Vadez, V., Sharma, K. (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27, 411424.

    • Search Google Scholar
    • Export Citation
  • 6.

    Boucher, V., Buitink, J., Lin, X., Boudet, J., Hoekstra, F. A., Hundertmark, M., Renard, D., Leprince, O. (2009) MtPM25 is an atypical hydrophobic late embryogenesis abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ. 33, 418430.

    • Search Google Scholar
    • Export Citation
  • 7.

    Cuming, A. C. (1999) LEA protein. In: Casey, R., Shewry, P. R. (eds), Seed proteins. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 753780.

    • Search Google Scholar
    • Export Citation
  • 8.

    Dure, L. (1993) Structural motifs in LEA proteins. In: Close, T. J., Bray, E. A. (eds), Plant responses to cellular dehydration during environmental stress. American Society of Plant Physiologists, Rockville, MD, pp. 91103.

    • Search Google Scholar
    • Export Citation
  • 9.

    Dure, L. III, Greenway, S. C., Galau, G. A. (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20, 41624168.

    • Search Google Scholar
    • Export Citation
  • 10.

    Eycken, W., Engler, J. D. A., Inze, D., Montagu, M., Gheysen, G. (1996) A molecular study of rootknot nematode-induced feeding sites. Plant J. 9, 4554.

    • Search Google Scholar
    • Export Citation
  • 11.

    Goyal, K., Shinozaki, K. (2005) LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388, 151157.

  • 12.

    Haaning, S., Radutoiu, S., Hoffmann, S. V., Dittmer, J., Giehm, L., Otzen, D. E., Stougaard, J. (2008) An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. J. Biol. Chem. 283, 3114231152.

    • Search Google Scholar
    • Export Citation
  • 13.

    He, S., Tan, L., Hu, Z., Chen, G., Wang, G., Hu, T. (2012) Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol. Genet. Genomics 287, 3954.

    • Search Google Scholar
    • Export Citation
  • 14.

    Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27, 297300.

    • Search Google Scholar
    • Export Citation
  • 15.

    Hughes, D. W., Galau, G. A. (1989) Temporally modular gene expression during cotyledon development. Genes Dev. 3, 358369.

  • 16.

    Hundertmark, M., Hincha, D. K. (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9, 118139.

    • Search Google Scholar
    • Export Citation
  • 17.

    Imai, R., Chang, L., Ohta, A., Bray, E. A., Takagi, M. (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243248.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kim, H. S., Lee, J. H., Kim, J. J., Kim, C. H., Jun, S. S., Hong, Y. N. (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344, 115123.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kyte, J., Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105132.

  • 20.

    Ling, H., Zeng, X., Guo, S. (2016) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia solisystem. Sci. Rep. 6, 39693.

    • Search Google Scholar
    • Export Citation
  • 21.

    Liu, M., Li, D. M., Wang, Z. K., Meng, F. Z., Li, Y. G., Wu, X. X., Teng, W. L., Han, Y. P., Li, W. B. (2012) Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant cell, Tissue Organ Cult. 111, 277289.

    • Search Google Scholar
    • Export Citation
  • 22.

    Maitra, N., Cushman, J. C. (1994) Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late embryogenesis abundant protein. Plant Physiol. 106, 805806.

    • Search Google Scholar
    • Export Citation
  • 23.

    Menze, M. A., Boswell, L., Toner, M., Hand, S. C. (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J. Biol. Chem. 284, 1071410719.

    • Search Google Scholar
    • Export Citation
  • 24.

    Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34, 137148.

    • Search Google Scholar
    • Export Citation
  • 25.

    Rodriguez-Valentin, R., Campos, F., Battaglia, M., Solorzano, R. M., Rosales, M. A. (2014) Group 6 late embryogenesis abundant (LEA) proteins in monocotyledonous plants: genomic organization and transcript accumulation patterns in response to stress in Oryza sativa. Plant Mol. Biol. Rep. 1, 198208.

    • Search Google Scholar
    • Export Citation
  • 26.

    Simpson, S. D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003) Two differed novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by deydration stress and dark-induced senescence. Plant J. 33, 259270.

    • Search Google Scholar
    • Export Citation
  • 27.

    Thomashow, M. F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rec. Plant Physiol. Plant Mol. Biol. 50, 571599.

    • Search Google Scholar
    • Export Citation
  • 28.

    Wang, M. W., Li, P., Li, C., Pan, Y. L., Jiang, X. Y., Zhu, D. Y., Zhao, Q., Yu, J. J. (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol. 14, 290305.

    • Search Google Scholar
    • Export Citation
  • 29.

    Xu, D. (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249257.

    • Search Google Scholar
    • Export Citation
  • 30.

    Yamaguchi-Shinozaki, K., Shinozaki, K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoter. Trends Plant Sci. 10, 8894.

    • Search Google Scholar
    • Export Citation
  • 31.

    Zegzouti, H., Jones, B., Marty, C., Lelievre, J. M., Latche, A., Pech, J. C., Bouzayen, M. (1997) Er5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol. Bio. 35, 847854.

    • Search Google Scholar
    • Export Citation