View More View Less
  • 1 Tunis El Manar University, 2092 Tunis, Tunisia
  • 2 Taif University, Kingdom of Saudi Arabia
Restricted access

Seeds of snail medic (Medicago scutellata L.) were assessed for their response to salt at the germination and seedling stages. NaCl at concentrations 86 and 170 mM decreased the final germination percentage. Embryonic axis length, water content and dry weight of embryonic axis and cotyledons were also reduced by salt treatment. Furthermore, 28-d-old plants were grown hydroponically with different NaCl concentrations (0, 86 and 170 mM). After 7 days of treatment, growth, water content and development of the different organs of M. scutellata plant were affected especially at the highest NaCl concentration (170 mM). However, NaCl did not affect root length and the number of stem shoots but reduced stem length and total leaf area. Salt treatment increased markedly the concentration of Na+ in leaf and root tissues while reduced that of K+ only in root and stem tissues. Lipid peroxidation revealed the damage of the membranes of roots and leaves. Moreover, showed a more intense suberization and lignification at the cambial zone of roots of M. scutellata, were observed under the effect of NaCl.

  • 1.

    Ashraf, M., Orooj, A. (2006) Salt stress effects on growth, ion accumulation and seed oil concentration in an arid zone traditional medicinal plant ajwain (Trachyspermum ammi [L.] Sprague). J. Arid. Environ. 64, 209220.

    • Search Google Scholar
    • Export Citation
  • 2.

    Asish, K. P., Anath, B. D. (2004) Salt tolerance and salinity effects on plants. Ecotox. Environ. Safe. 60, 324349.

  • 3.

    Attia, H., Karray, N., Rabhi, M., Lachaâl, M. (2008) Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta Physiol. Plant. 30, 723727.

    • Search Google Scholar
    • Export Citation
  • 4.

    Attia, H., Nouaili, S., Soltani, A., Lachaâl, M. (2009) Comparison of the responses to NaCl stress of two pea cultivars using split-root system. Sci. Hort. 123, 164169.

    • Search Google Scholar
    • Export Citation
  • 5.

    Attia, H., Ouhibi, C., Ellili, A., Msilini, N., Bouzaïen, G., Karray, N., Lachaâl, M. (2011) Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiol. Plant. 33, 823833.

    • Search Google Scholar
    • Export Citation
  • 6.

    Ben Amor, N., Hamed, K. B., Debez, A., Grignon, C., Abdelly, C. (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci. 168, 889899.

    • Search Google Scholar
    • Export Citation
  • 7.

    Chinnusamy, V., Jagendorf, A., Zhu, J. K. (2005) Understanding and improving salt tolerance in plants. Crop Sci. 45, 437448.

  • 8.

    da Silva, E. C., Nogueira, R. J. M. C., Araujo, F. P., Melo, N. F., de Azevedo Neto, A. D. (2008) Physiological responses to salt stress in young umbu plants. Environ. Exp. Bot. 63, 147157.

    • Search Google Scholar
    • Export Citation
  • 9.

    Dionisio-Sese, M. L., Tobita, S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 19.

  • 10.

    Duzan, H. M., Zhou, X., Souleimanov, A., Smith, D. L. (2004) Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 55, 26412646.

    • Search Google Scholar
    • Export Citation
  • 11.

    El-Keblawy, A. (2004) Salinity effects on seed germination of the common desert range grass, Panicum turgidum. Seed Sci. Technol. 32, 943948.

    • Search Google Scholar
    • Export Citation
  • 12.

    Fakhari, F., Sadeghi, H. (2016) Investigating the effects of pod elimination on salinity tolerance in annual Medic (Medicago scutellata L.). J. Rangeland Sci. 6, 232241.

    • Search Google Scholar
    • Export Citation
  • 13.

    Garthwaite A. J., Millhollon, E. P., Lucas, M. C. (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl– into the shoots. J. Exp. Bot. 56, 23652378.

    • Search Google Scholar
    • Export Citation
  • 14.

    Graham, P. H., Vance, C. P. (2003) Legumes: importance and constraints to greater use. Plant Physiol. 131, 872877.

  • 15.

    Heath, R. L., Packer, L. (1968) Photooxidation in isolated chloroplasts I: kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189198.

    • Search Google Scholar
    • Export Citation
  • 16.

    Hoagland, D. R., Arnon, D. I. (1950) The water culture method for growing plants without soil. Circ 347. Cal. Agri. Exp. Stat. Berkley.

  • 17.

    Hu, Y., Fricke, W., Schmidhalter, U. (2005) Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution. Funct. Plant Biol. 32, 973985.

    • Search Google Scholar
    • Export Citation
  • 18.

    Huang, W. L., Liu, F. L. (2002) Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Bot. Bull. Acad. Sinica 43, 107113.

    • Search Google Scholar
    • Export Citation
  • 19.

    Jbir, N., Chaïbi, W., Ammar, S., Jemmali, A., Ayadi, A. (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. C.R. Acad. Sci. Paris, Sciences de la vie / Life Sciences 324, 863868.

    • Search Google Scholar
    • Export Citation
  • 20.

    Lazrek, F., Roussel, V., Ronfort, J., Cardinet, G., Chardon, F., Aouani, M. E., Huguet, T. (2009) The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135, 391402.

    • Search Google Scholar
    • Export Citation
  • 21.

    Lechno, S., Zamski, E., Telor, E. (1997) Salt stress-induced responses in cucumber plants. J. Plant Physiol. 150, 206211.

  • 22.

    McKinney, G. (1941) Absorption of light by chlorophyll solutions. J. Biol. Chem. 140, 315332.

  • 23.

    Mezni, M., Albouchi, A., Bizid, E., Hamza, M. (2002) Effet de la salinité des eaux d’irrigation sur la nutrition minérale chez trois variétés de Luzerne pérenne (Medicago sativa). Agronomie 22, 283291.

    • Search Google Scholar
    • Export Citation
  • 24.

    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 406410.

  • 25.

    Mtimet, A. (2001) Soils of Tunisia. In: Zdruli, P., Steduto, P., Lacirignola, C., Montanarella, L. (eds) Soil resources of southern and eastern mediterranean countries. Bari, Italy, pp. 243262.

  • 26.

    Nasri, N., Kaddour, R., Rabhi, M., Plassard, C., Lachaâl, M. (2011) Effect of salinity on germination, phytase activity and phytate content in lettuce seedling. Acta Physiol. Plant. 33, 935942.

    • Search Google Scholar
    • Export Citation
  • 27.

    Parida, A. K., Das, A. B. (2005) Salt tolerance and salinity effects on plants. Ecotox. Environ. Safe. 60, 324349.

  • 28.

    Piano, E., Francis, C. M. (1992) The annual species of Medicago in the Mediterranean region: ecogeography and related aspects of plant introduction and breeding. In: Proceedings of the 10th International Conference of Eucarpia Medicago spp. (Group Lodi), Italy, pp. 373385.

    • Search Google Scholar
    • Export Citation
  • 29.

    Reinhards, D. H., Rost, T. L. (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ. Exp. Bot. 35, 563574.

    • Search Google Scholar
    • Export Citation
  • 30.

    Reinoso, H., Sosa, L., Ramírez, L., Luna, V. (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Rev. Can. Bot. 82, 618628.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sairam, R. K., Srivastava, G. C. (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 162, 897904.

    • Search Google Scholar
    • Export Citation
  • 32.

    Shalata, A., Neumann, P. M. (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot. 52, 22072211.

    • Search Google Scholar
    • Export Citation
  • 33.

    Walker, R. R., Sedgley, M., Blesing, M. A., Douglas, T. J. (1984) Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion. J. Exp. Bot. 35, 14811494.

    • Search Google Scholar
    • Export Citation
  • 34.

    Wenxue, W., Bilsborrow, P. E., Hooley, P., Fincham, D. A., Lombi, E., Forster, B. P. (2003) Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250, 183191.

    • Search Google Scholar
    • Export Citation
  • 35.

    Zhong, H., Läuchli, A. (1993) Changes of cell wall composition and polymer size in primary roots of cotton seedlings under salt stress. J. Exp. Bot. 44, 773778.

    • Search Google Scholar
    • Export Citation