View More View Less
  • 1 Eötvös Loránd University, Faculty of Science, Centre of Environmental Sciences, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
  • | 2 Budapest Business School University of Applied Sciences Faculty of Commerce, Catering and Tourism, Department of Methodology, Alkotmány u. 9–11, H-1054 Budapest, Hungary
  • | 3 Institute of Geological and Geochemical Research, MTA Research Centre for Astronomy and Earth Sciences, Budaörsi út. 45, H-1112 Budapest, Hungary
Restricted access

The aim of the present study is to extend the applicability of MRI measurements similar to those used in human diagnostics to the examination of water barriers in living plants, thus broadening their use in natural sciences. The cucumber, Cucumis sativus, and Phillyrea angustifolia, or false olive, were chosen as test plants. The MRI measurements were carried out on three samples of each plant in the same position vis-a-vis the MRI apparatus using a Siemens Avanto MRI scanner. Two different relaxation times were employed, T1, capable of histological mapping, and T2, used for the examination of water content. In the course of the analysis, it was found that certain histological formations and branching cause modifications to the intensity detected with relaxation time T2. Furthermore, these positions can also be found in T1 measurements. A monotonic correlation (cucumber: ρ = 0.829; false olive: ρ = –0.84) was observed between the T1 and T2 measurements. In the course of the statistical analysis of the signal intensities of the xylems it was concluded that they cannot be regarded as independent in a statistical sense; these changes rather depend on the anatomic structure of the plant, as the intensity profile is modified by nodes, leaves and branches. This serves as a demonstration of the applicability of MRI to the measurement of well know plant physiological processes. The special parametrization required for this equipment, which is usually used in human diagnostics, is also documented in the present study.

  • 1.

    Abbott, J. A. (1999) Quality measurement of fruits and vegetables. Postharvest Biol. Technol. 15, 207225.

  • 2.

    Adriaensen, H., Musse, M., Quellec, S., Vignaud, A., Cambert, M., Mariette, F. (2013) MSE-MRI sequence optimisation for measurement of bi- and tri-exponential T2 relaxation in a phantom and fruit. Magn. Reson. Imaging 31, 16771689.

    • Search Google Scholar
    • Export Citation
  • 3.

    Andaur, J. E., Guesalaga, A. R., Agosin, E. E., Guarini, M. W., Irarrázaval, P. (2004) Magnetic Resonance Imaging for nondestructive analysis of wine grapes. J. Agric. Food Chem. 52, 165170.

    • Search Google Scholar
    • Export Citation
  • 4.

    Bartholy, J., Pongrácz, R., Gelybó, Gy., Szabó, P. (2008) Analysis of expected climate change in the Carpathian Basin using the PRUDENCE results. Idojárás 112, 249265.

    • Search Google Scholar
    • Export Citation
  • 5.

    Berényi, E., Bogner, P., Horváth, Gy., Repa, I. (1997) Radiológia. Budapest, Springer Hungarica Kiadó Kft. (in Hungarian)

  • 6.

    Borisjuk, L., Rolletschek, H., Neuberger, T. (2012) Surveying the plant’s world by magnetic resonance imaging. Plant 70, 129146.

  • 7.

    Borisjuk, L., Rolletschek, H., Neuberger, T. (2013) Nuclear magnetic resonance imaging of lipid in living plants. Prog. Lipid Res. 52, 465487.

    • Search Google Scholar
    • Export Citation
  • 8.

    Bürggemann, N., Gessler, A., Kayler, Z., Keel, S. G., Badeck, F., Barthel, M., Buchmann, N., Brugnoli, E., Esperschütz, J., Gavrichkova, O., Ghashghaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., Bahn, M. (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8, 34573489.

    • Search Google Scholar
    • Export Citation
  • 9.

    Buxton, B. R. (2009) Introduction to Functional Magnetic Resonance Imaging. Cambridge University Press.

  • 10.

    Chen, P., McCarthy, M. J., Kim, S. M., Zion, B., Trans, A. (1996) Development of a high speed NMR technique for sensing maturity of avocados. Trans. ASAE 39, 22052209.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cleveland, W. S., Devlin, S. J. (1988) Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596610.

    • Search Google Scholar
    • Export Citation
  • 12.

    Cosgrove, D. J. (2005) Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850861.

  • 13.

    Daudet, F. A., Lacointe, A., Gaudillère, J. P., Cruiziat, P. (2002) Generalized Münch coupling between sugar and water fluxes for modeling carbon allocation as affected by water status. J. Theor. Biol. 214, 481498.

    • Search Google Scholar
    • Export Citation
  • 14.

    Edzes, H. T., Van Dusschoten, D., Van As, H. (1998) Quanitative T2 imaging of plant tissues by mean of multi-echo MRI microscopy. Magn. Reson. Imaging 16, 185196.

    • Search Google Scholar
    • Export Citation
  • 15.

    Földes, T., Bogner, P., Závoda, F., Repa, I. (2003) Opportunities of CT and MRI measurements in carbohydrate research. Magy. Radiológia 10, 231237. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • 16.

    Guichard, S., Gary, C., Leonardi, C., Bertin, N. (2005) Analysis of growth and water relation of tomato fruits in relation to air vapor pressure deficit and plant fruit load. J. Plant Growth Regul. 24, 113.

    • Search Google Scholar
    • Export Citation
  • 17.

    Haraszty, Á., Hortobágyi, T., Fridvalszky, L., Kiss, I., Pólya, L. (1978) Növényszervezettan és növényélettan. Nemzeti Tankönyvkiadó. Budapest (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • 18.

    Hills, B. P., Clark, C. J. (2003) Quality assessment of horticultural products by NMR. Ann. R. Nmr. S. 50, 75120.

  • 19.

    IPCC (2013) Summary for Policymakers. In: Stocker, T. F., D. Qin, G.-K. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Plattner, M., Tignor, S. K., Allen, J., Boschung, A., Nauels, Y., Xia, V., Bex, P. M. Midgley (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. www.ipcc.ch

    • Search Google Scholar
    • Export Citation
  • 20.

    Ishida, N., Kobayashi, T., Koizumi, M., Kano, H. (1989) 1-H-NMR imaging of tomato fruits. Agric. Biol. Chem. 53, 23632367.

  • 21.

    Jakusch, P., Anda, A. (2010) New possibilities in following the transport of water in living plants. 10th Annual Meeting of the European Meteorological Society (EMS) and 8th ECAC, Switzerland.

    • Search Google Scholar
    • Export Citation
  • 22.

    Joyce, D. C., Hockings, P. D., Mazucco, R. A., Shorter, A. J., Brereton, I. M. (1993) Heat treatment injury of mango fruit revealed by nondestructive magnetic resonance imaging. Postharvest Biol. Tech. 3, 305311.

    • Search Google Scholar
    • Export Citation
  • 23.

    Kenouche, S., Perrier, M., Bertin, N. J., Larionova, J., Ayadi, A., Zanca, M., Long, J., Bezzi, N., Stein, P. C., Guari, Y., Cieslak, M., Godin, C., Goze-Bac, C. (2014) In vivo quantitative NMR imaging of fruit tissues during growth using Spoiled Gradient Echo sequence. Magn. Reson. Imaging 32, 14181427.

    • Search Google Scholar
    • Export Citation
  • 24.

    Kovács, K., Kuzmann, E., Vértes, A., Lévai, L., Cseh, E., Fodor, F. (2010) Effect of cadmium on iron uptake in cucumber roots: A Mössbauer-spectroscopic study. Plant Soil 327, 4956.

    • Search Google Scholar
    • Export Citation
  • 25.

    Kuchenbrod, E., Kahler, E., Thürmer, F., Deichmann, R., Zimmermann, U., Haase, A. (1998) Functional Magnetic Resonance Imaging in intact plants-quantitative observation of flow in plant vessels. Magn. Reson. Imaging 16, 331338.

    • Search Google Scholar
    • Export Citation
  • 26.

    Larcher, W. (2004) Physiological Plant Ecology. Springer-Verlag, Berlin Heidelberg.

  • 27.

    Mazhar, M., Joyce, D., Cowinc, G., Breretonc, I., Hofmand, P., Collins, R., Gupta, M. (2015) Non-destructive 1H-MRI assessment of flesh bruising in avocado (Persea americana M.) cv. Hass. Postharvest Biol. Tech. 100, 3340.

    • Search Google Scholar
    • Export Citation
  • 28.

    Mohr, H., Schopfer, P. (1995) Plant Physiology. Springer-Verlag. Berlin-Heidelberg.

  • 29.

    Moreda, G. P., Ortiz.Canavate, J., Garcia-Ramos, F. J., Ruiz-Altisent, M. (2009) Non-destructive technologies for fruit and vegetable size determination –a review. J. Food Eng. 92, 119136.

    • Search Google Scholar
    • Export Citation
  • 30.

    Muja, N., Bulte, J. W. M. (2009) Magnetic resonance imaging of cells in experimental disease models. Prog. Nucl. Mag. Res. Sp. 55, 6177.

    • Search Google Scholar
    • Export Citation
  • 31.

    Musse, M., De Guio, F., Quellec, S., Cambert, M., Challois, S., Davenel, A. (2010) Quantification of microporosity in fruit by MRI at various magnetic fields: comparison with X-ray microtomography. Magn. Reson. Imaging 28, 15251534.

    • Search Google Scholar
    • Export Citation
  • 32.

    Pearcy, R. W., Ehleringer, J., Mooney, H. A., Rundel, P. W. (1991) Plant Physiological Ecology. Chapman and Hall, London–New York–Tokyo.

    • Search Google Scholar
    • Export Citation
  • 33.

    Peuke, A. D., Gessler, A., Trumbore, S., Windt, C. W., Homan, N., Gerkema, E., Van As, H. (2014) Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots. Plant Cell Environ, DOI: 10.1111/pce.12399

    • Search Google Scholar
    • Export Citation
  • 34.

    Prista, G. O., Agostinho, R. J., Cachao, M., A. (2015) Observing the past to better understand the future: a synthesis of the Neogene climate in Europe and its perspectives on present climate change. Open Geosci. 7, 6583.

    • Search Google Scholar
    • Export Citation
  • 35.

    Raffo, A., Gainferri, R., Barbieri, R., Brosio, E. (2005) Rippening of banana fruit monitored by water relaxation and diffusion H-1-NMR measurements. Food Chem. 89, 149158.

    • Search Google Scholar
    • Export Citation
  • 36.

    Saltveit, M. E. (1991) Determining tomato fruit maturity with nondestructive in vivo nuclear magnetic resonance imaging. Postharvest Biol. Tech. 1, 153159.

    • Search Google Scholar
    • Export Citation
  • 37.

    Sanches, J., Biscegli, C. I., Durigan, J. F., Sim es, M. L., da Silva, W. T. L. (2003) Diagnosis of mechanical injuries in avocados by magnetic resonance imaging. In: V World Avocado Congress, Granada, Málaga, Spain, pp. 695700.

    • Search Google Scholar
    • Export Citation
  • 38.

    Schaafsma, T. J., Van As, H., Palstra, W. D., Snaar, J. E., de Jager, P. A. (1992) Quantitative measurement and imaging of transport processes in plants and porous media by 1H NMR. Magn. Reson. Imaging 10, 827836.

    • Search Google Scholar
    • Export Citation
  • 39.

    Scheenen, T., Heemskerk, A., Jager, de A., Vergeldt, F., Van As, H. (2002) Functional imaging of plants: A nuclear magnetic resonance study of cucumber plant. Biophys. J. 82, 481492.

    • Search Google Scholar
    • Export Citation
  • 40.

    Van As, H., Scheenen, T., Vergeldt, F. J. (2009) MRI of intact plants. Photosynth. Res. 102, 213222.

  • 41.

    Van As, H. (2007) Intact plant MRI for the study of cell water relations, membrane permeability, cellto- cell and long-distance water transport. J. Exp. Bot. 58, 743756.

    • Search Google Scholar
    • Export Citation
  • 42.

    Van As, H., Schaafsma, T. J. (1984) Noninvasive measurement of plant water flow by nuclear magnetic resonance. Biophys. J. 45, 469472.

    • Search Google Scholar
    • Export Citation
  • 43.

    Van As, H., Reijnders, J. E., de Jager, P. A., P. A. van de Sanden, Schaafsma, T. J. (1994) In situ plant water balance studies using a portable NMR spectrometer. J. Exp. Bot. 45, 6167.

    • Search Google Scholar
    • Export Citation
  • 44.

    Van As, H., Windt, C. W. (2008) Magnetic Resonance Imaging of Plants: Water Balance and Water Transport in Relation to Photosynthetic Activity. In: Aartsma, T. J., Matysik, J. (eds) Biophysical Techniques in Photosynthesis II. Springer, Berlin_Heidelberg, pp. 5575.

    • Search Google Scholar
    • Export Citation
  • 45.

    Van As, H., van Duynhoven, J. (2013) MRI of plants and foods. J. Magn. Reson. 229, 2534.

  • 46.

    Van der Weerd, L., Claessens, M. M. A.E., Edfé, C., Van As, H. (2002) Nuclear magnetic resonance imaging of membrane permeabilty changes in plants during osmotis stress. Plant Cell Environ. 25, 15391549.

    • Search Google Scholar
    • Export Citation
  • 47.

    Van der Weerd, L., Claessens, M. M. A.E., Ruttink, T., Vergeldt, F. J., Schaafsma, T. J., Van As, H. (2001) Quantitative NMR microscopy of osmotic stress responses in maize and pearl millet. J. Exp. Bot. 52/365, 23332343.

    • Search Google Scholar
    • Export Citation
  • 48.

    Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S. Zhu, J. H., Zhu, J. K. (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant. J. 45, 523539.

    • Search Google Scholar
    • Export Citation
  • 49.

    Wang, S. Y., Wang, P. C., Faust, M. (1988) Non-destructive detection of water-core in apple with nuclear magnetic resonance imaging. Hort-Science 35, 227234.

    • Search Google Scholar
    • Export Citation
  • 50.

    Westbrook, C., Roth, C. K., Talbot, J. (2005) MRI in practice. Blackwell publishing. Italy.

  • 51.

    Yang, M., Song, Y., Zhu, N., Zhao, Y., Liu, Y., Jiang, L. (2013) Dynamic measurements of CO2 flow in water saturated porous medium at low temperature using MRI. Energy Proced. 37, 12671274.

    • Search Google Scholar
    • Export Citation

Editorial Board

      Csányi, Vilmos (Göd)
      Dudits, Dénes (Szeged)
      Falus, András (Budapest)
      Fischer, Ernő (Pécs)
      Gábriel, Róbert (Pécs)
      Gulya, Károly (Szeged)
      Gulyás, Balázs (Stockholm)
      Hajós, Ferenc (Budapest)
      Hámori, József (Budapest)
      Heszky, László (Gödöllő)
      Hideg, Éva (Szeged)
      E. Ito (Sanuki)
      Janda, Tibor (Martonvásár)
      Kavanaugh, Michael P. (Missoula)
      Kása, Péter (Szeged)
      Klein, Éva (Stockholm)
      Kovács, János (Budapest)
      Brigitte Mauch-Mani (Neuchâtel)
      Nässel, Dick R. (Stockholm)
      Nemcsók, János (Szeged)
      Péczely, Péter (Gödöllő)
      Roberts, D. F. (Newcastle-upon-Tyne)
      Sakharov, Dimitri A. (Moscow)
      Singh, Meharvan (Fort Worth)
      Sipiczky, Mátyás (Debrecen)
      Szeberényi, József (Pécs)
      Székely, György (Debrecen)
      Tari, Irma (Szeged)
      Vágvölgyi, Csaba (Szeged),
      L. Zaborszky (Newark)

 

Acta Biologica Hungarica
P.O. Box 35
H-8237 Tihany, Hungary
Phone: (36 87) 448 244 ext. 103
Fax: (36 87) 448 006
E-mail: elekes@tres.blki.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Acta Biologica Hungarica
Language English
Size  
Year of
Foundation
1950
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5383 (Print)
ISSN 1588-256X (Online)