View More View Less
  • 1 Department of Horticultural Science, Urmia University, Urmia 165, Iran
Restricted access

Hyoscyamus reticulatus L. is a herbaceous biennial belonging to the solanaceae family. Hyoscyamine and scopolamine as main tropane alkaloids accumulated in henbane are widely used in medicine to treat diseases such as parkinson’s or to calm schizoid patients. Hairy roots media manipulation which uses elicitors to activate defense mechanisms is one of the main strategies for inducing secondary metabolism as well as increasing the production of valuable metabolites. Cotyledon-derived hairy root cultures were transformed by Agrobacterium rhizogenes. Sodium nitroprusside (SNP), a nitric oxide donor), was used in various concentrations (0, 50, 100, 200 and 300 μM) and exposure times (24 and 48 h). Treatment with SNP led to a significant reduction in fresh and dry weight of hairy roots, compared to control cultures. ANOVA results showed that elicitation of hairy root cultures with SNP at different concentrations and exposure times significantly affected the activity of as antioxidant enzymes such as catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX). The highest hyoscyamine and scopolamine production (about 1.2-fold and 1.5-fold increases over the control) was observed at 50 and 100 μM SNP at 48 and 24 hours of exposure time, respectively. This is the first report of SNP elicitation effects on the production of tropane alkaloids in hairy root cultures.

  • 1.

    Aberham, A., Pieri, V., Croom, E. M. J.R., Ellmerer, E., Stuppner, H. (2011) Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera carpliniensis and Gentiana lutea using LC-MS and RP-HPLC. J. Pharm. Biomed. Anal. 54, 517525.

    • Search Google Scholar
    • Export Citation
  • 2.

    Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121126.

  • 3.

    Amdoun, R., Khelifi, L., Khelifi-Slaoui, M., Amroune, S., Benyoussef, E. H., Vu Thi, D., Assaf-Ducrocq, C., Gontier, E. (2009) Influence of minerals and elicitation on Datura stramonium L. tropane alkaloid production: modelization of the In vitro biochemical response. Plant Sci. 177, 8187.

    • Search Google Scholar
    • Export Citation
  • 4.

    Arasimowicz, M., Floryszak-Wieczorek, J. (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci. 172, 876887.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bao, X., Lu, C., Frangos, J. A. (1999) Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NFKB and egr-1. Arterioscler. Thromb. Vasc. Biol. 19, 9961003.

    • Search Google Scholar
    • Export Citation
  • 6.

    Beligni, M. V., Lamattina, L. (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. J. Biol. Chem. 3, 199208.

    • Search Google Scholar
    • Export Citation
  • 7.

    Bertani, G. (1951) Studies onlysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293300.

  • 8.

    Chandra, S., Chandra, R. (2011) Engineering secondary metabolite production in hairy roots. Phytochem. Rev. 10, 371395.

  • 9.

    Del Rio, L. A., Corpas, F. J., Barroso, J. B. (2004) Nitric oxide synthase activity in plants. Phytochem. 65, 783792.

  • 10.

    Delledonne, M., Xia, Y., Dixon, R. A., Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585588.

    • Search Google Scholar
    • Export Citation
  • 11.

    Delledonne, M., Zeier, J., Marocco, A., Lamb, C. (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Acad. Nat. Sci. Phila. 98, 1345413459.

    • Search Google Scholar
    • Export Citation
  • 12.

    Dixon, R. A. (2001) Natural products and plant disease resistance. Nature 411, 843847.

  • 13.

    Duan, X., Su, X., You, Y., Qu, H., Li, Y., Jiang, Y. (2007) Effect of nitric oxide on pericarp browing of harvested logan fruit in relation to phenolic metabolism. Food Chem. 104, 571576.

    • Search Google Scholar
    • Export Citation
  • 14.

    Durner, J., Wendehenne, D., Klessig, D. F. (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc. Acad. Nat. Sci. Phila. 95, 1032810333.

    • Search Google Scholar
    • Export Citation
  • 15.

    Esfandiari, E., Mahboob, S. A., Shekari, F. (2008) Destructive effect of active oxygen species, plant defence mechanisms and its necessary 10th. Agro Plant Breed Cong Iran. 122.

    • Search Google Scholar
    • Export Citation
  • 16.

    Fadzillah, N. M., Yusuf, N., Mahmood, M. (2006) Paraquat (Methyl viologen) toxicity in centella asiatica callus cultures. Pertanika J. Trop. Agric. Sci. 29, 5766.

    • Search Google Scholar
    • Export Citation
  • 17.

    Fu, J., Huang, B., Zhang, G. (2000) Physiological and biochemical change during seed filling in relation to leaf senescence in soybean. Bio. Plantarum 4, 545548.

    • Search Google Scholar
    • Export Citation
  • 18.

    Gould, K. S., Klinguer, A., Pugin, A., Wendehenne, D. (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ. 26, 18511862.

  • 19.

    Hashimoto, T., Yamad, Y. (1987) Purification and characterization of hyoscyamine 6ß-hydroxylase from root culture of Hyoscyamus niger L. Eur. J. Biochem. 194, 277285.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hayat, S., Mori, M., Pichtel, J., Ahmad, A. (2010) Nitric oxide in plant physiology. Wiley-Blackwell.

  • 21.

    Hu, X., Neill, S., Cai, W. (2003) Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct. Plant Biol. 30, 901907.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kamada, H., Okamura, N., Satake, M., Harada, H., Shimomura, K. (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep. 5, 239242.

    • Search Google Scholar
    • Export Citation
  • 23.

    Kopyra, M., Gwozdz, E. A. (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol. Bioch. 41, 10111017.

    • Search Google Scholar
    • Export Citation
  • 24.

    Macadam, J. W., Nelson, C. J., Sharp, R. E. (1992) Peroxidaes activity in the leaf elongation zone of tall fescue. Plant Physiol. 99, 872878.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405410.

  • 26.

    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plantarum 15, 473476.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867880.

    • Search Google Scholar
    • Export Citation
  • 28.

    Nasibi, F., Kalantari, K. M. (2009) Influence of nitric oxide in protection of tomato seedling against oxidative stress induced by osmotic stress, Acta Physiol. Plant 31, 10371044.

    • Search Google Scholar
    • Export Citation
  • 29.

    Nasibi, F., Manochehri Kalantari, K., Khodashenas, M. (2010) Effect of sodium nitroprusside (SNP) on some biochemical characteristics of tomato seedlings (Lycopersicum esculentum) under drought stress. J. Agri. Sci. Nature Res. 16, 216.

    • Search Google Scholar
    • Export Citation
  • 30.

    Navarre, D. A., Wendehenne, D., Durner, J., Noad, R., Klessig, D. F. (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol. 122, 573582.

    • Search Google Scholar
    • Export Citation
  • 31.

    Neill, J., Radhika, D., Hancock, J. (2003) Nitric oxide signaling in plant. New Phytol. 159, 1135.

  • 32.

    Oksman-Caldentey, K. M., Inze, D. (2004) Plant cell factories in the post-genome era: new ways to produce designer secondary metabolites. Trends Plant Sci. 9, 440443.

    • Search Google Scholar
    • Export Citation
  • 33.

    Palazon, J., Navarro-Ocana, A., Hernandez-Vazquez, L., Mirjalili, M. H. (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13, 17221742.

    • Search Google Scholar
    • Export Citation
  • 34.

    Parsa, M., Garoosi, G. A., Haddad, R. (2013) Cloning and study the bioinfomatic trait of tropinone reductase-II (TR II) gene from Hyoscyamus niger. J. Cell Tissu 3, 307318.

    • Search Google Scholar
    • Export Citation
  • 35.

    Schmidt, H. W., Walter, U. (1994) NO at work. Cell. 78, 919925.

  • 36.

    Seidel, V., Windhovel. J., Eaton, G., Alfermann, A. W., Arroo, R. R. J., Medarde, M., Petersen, M., Wolley, J. G. (2002) Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta 215, 10131039.

    • Search Google Scholar
    • Export Citation
  • 37.

    Tripathi, L., Tripathi, J. N. (2003) Role of biotechnology in medicinal plants. Tropical J. Pharm. Res. 2, 243253.

  • 38.

    Vanleberghe, G. C., Mclntosh, L. (1996) Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol. 111, 589595.

    • Search Google Scholar
    • Export Citation
  • 39.

    Wang, J. W., Zheng, L. P., Wu, J. Y., Tan., R. X. (2006) Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide-Biol. Ch. 15, 351358.

    • Search Google Scholar
    • Export Citation