View More View Less
  • 1 Islamic Azad University, Iran
Restricted access

Introduction

Drought is a major environmental factor that limits crops productivity. To cope with the adverse effects of drought, plants have evolved various adaptive mechanisms, such as accumulation of osmolytes. Polyamines (PAs) play an important role in the plant growth and development and response to abiotic stresses. This experiment was conducted to investigate the role of exogenous PAs on drought tolerance of mung bean.

Methods

Mung bean seeds were soaked in 0 or 100 µM putrescine (Put), spermidine (Spd), spermine (Spm), or their mixture for 10 hr. Then, treated seeds were sown in the field and were exposed to drought stress condition.

Results

The growth attributes including shoot length, biomass, leaf area index (LAI), and grain yield markedly reduced due to drought stress. Drought stress also decreased soluble protein content, relative water content (RWC), chlorophyll value, stomatal conductance (g s), and net photosynthetic rate (P N) but increased malondialdehyde (MDA), total soluble sugars (TSS), and proline contents. Nonetheless, seed priming with the mixture of PAs alleviated adverse effects of drought stress and improved all growth attributes. Exogenous application of PAs also increased soluble protein content, RWC, chlorophyll value, P N, and more increased TSS and proline contents but decreased g s and MDA level.

Discussion

These results indicated that seed treatment with PAs especially combined treatment of Put + Spd + Spm could enhance drought tolerance of mung bean plants through the accumulation of osmoprotectants, improving water status, chlorophyll value, and P N as well as reduction of oxidative damage.

  • Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., Tiburcio, A. F. (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231, 12371249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashraf, M., Foolad, M. R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachrach, U. (2005) Naturally occurring polyamines: interaction with macromolecules. Curr. Protein Pept. Sci. 6, 559566.

  • Bates, L. S., Waldren, R. P., Teare, J. D. (1973) Rapid determination of proline for water stress studies. Plant Soil 39, 205207.

  • Bitrián, M., Zarza, X., Altabella, T., Tiburcio, A. F., Alcázar, R. (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2, 516528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 72, 248254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaves, M. M., Pereira, J. S., Maroco, J., Rodriguez, M. L., Ricardo, C. P. P., Osorio, M. L., Carvalho, I., Faria, T., Pinheiro, C. (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89, 907916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebeed, H. T., Hassan, N. M., El-Gorany, E. S. (2017) Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 118, 438448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fariduddin, Q., Varshne, P., Yusuf, M., Ahmad, A. (2013) Polyamines: potent modulators of plant responses to stress. J. Plant Interact. 8, 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009a) Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farooq, M., Wahid, A., Lee, D. (2009b) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant. 31, 937945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X. Z., Xing, F., Wang, N. Q., Peng, L. Z., Chun, C. P., Cao, L., Ling, L. L., Jiang, C. L. (2014) Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnol. Biotec. Equip. 28, 192198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, S. S., Tuteja, N. (2010) Polyamines and abiotic stress tolerance in plants. Plant Sign. Behav. 5, 2633.

  • Gupta, S., Agarwal, V. P., Gupta, N. K. (2012) Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plant. 18, 331336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homme, M. P. P., Gonzalez, B., Billard, J. P., Boucaud, J. (1992) Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of rye grass (Lolium perenne L.) as affected by source/sink modification after cutting. J. Plant Physiol. 140, 282291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iqbal, N., Nazar, R., Khan, N. A. (2016) Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. 1st ed. Springer, New Delhi, India.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusnetsov, V. V., Shevyakova, N. I. (2009) Polyamines and stress tolerance of plants. Plant Stress 1, 5071.

  • Kutlu Calişkan, N., Kadioğlu, A., Saruhan, G. L. N. (2017) Exogenously applied polyamines ameliorate osmotic stress-induced damages and delay leaf rolling by improving the antioxidant system in maize genotypes. Turk. J. Biol. 41, 563574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J. H., Wang, W., Wu, H., Gong, X., Moriguchi, T. (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci. 6, 827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Gómez, M., Hidalgo-Castellanos, J., Muñoz-Sánchez, J. R., Marín-Peña, A. J., Liuch, C., Herrera-Cervera, J. A. (2017) Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula–Sinorhizobium meliloti by preventing oxidative damage. Plant Physiol. Biochem. 116, 917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mofizur Rahman, I., Hasegawa, H. (2012) Water stress. 1st ed. Intech, Rijeka, Croatia.

  • Nahar, K., Hasanuzzaman, M., Rahman, A., Alam, M. M., Mahmud, J. A., Suzuki, T., Fujita, M. (2016) Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front. Plant Sci. 7, 1104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayyar, H., Chander, S. (2004) Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea. J. Agron. Crop Sci. 190, 355365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, M., Szalai, G., Janda, T. (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 237, 1623.

  • Puyang, X., An, M., Xu, L., Han, L., Zhang, X. (2016) Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress. Hortic. Environ. Biotechnol. 57, 1119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radhakrishnan, R., Lee, I. (2013) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J. Plant Growth Regul. 32, 2230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranawake, A. L., Amarasingha, U. G. S., Rodrigo, W. D. R. J., Rodrigo, U. T. D., Dahanayaka, N. (2011) Effect of water stress on growth and yield of mung bean (Vigna radiata L.) . Trop. Agric. Res. Ext. 14, 7679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadeghipour, O. (2009) The influence of water stress on biomass and harvest index in three mung bean (Vigna radiata L.) cultivars. Asian J. Plant Sci. 8, 245249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saruhan, N., Turgut-Terzi, R., Kadioglu, A. (2006) The effects of exogenous polyamines on some biochemical changes during drought stress in Ctenanthe setosa (Rosc.) Eichler. Acta Biol. Hung. 57, 221229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheteawi, S. A., Tawfik, K. M. (2007) Interaction effect of some biofertilizers and irrigation water regime on mung bean (Vigna radiata) growth and yield. J. Appl. Sci. Res. 3, 251262.

    • Search Google Scholar
    • Export Citation
  • Shi, J., Fu, X. Z., Peng, T., Huang, X. S., Fan, Q. J., Liu, J. H. (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol. 30, 914922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todorova, D., Katerova, Z., Shopova, E., Jodinskiene, M., Jurkoniene, S., Sergiev, I. (2016) Responses of pea plants to heat stress and spermine treatment. Zemdirbyste 103, 99106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, S., Hu, J., Li, Y., Ma, W., Zheng, Y., Zhu, S. (2011a) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul. 63, 279290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Shi, G., Ding, C., Xu, Y., Zhao, J., Yang, H., Pan, Q. (2011b) Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regul. 63, 251258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A. J., Kusano, T. (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 352, 486490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yemm, E. W., Willis, A. J. (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508514.

  • Yiu, J. C., Liu, C. W., Fang, D. Y. T., Lai, Y. S. (2009) Waterlogging tolerance of welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiol. Biochem. 47, 710716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, Y., Zahng, Y., Xiang, J., Wu, H., Chen, H., Zhang, Y., Zhu, D. (2016) Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity, endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings. J. Integr. Agric. 15, 295308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, N., Shi, X., Guan, Z., Zhao, S., Zhang, F., Chen, S., Fang, W., Chen, F. (2016) Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. Plant Physiol. Biochem. 105, 260270.

    • Crossref
    • Search Google Scholar
    • Export Citation

The submission template is available as an MS WORD docx.

Please, download the file from HERE

Acta Biologica Hungarica at Indexing/Ranking Services:

  • Impact Factor (2019): 0.585
  • Scimago Journal Rank (2019): 0.219
  • SJR Hirsch-Index (2019): 27
  • SJR Quartile Score (2019): Q3 Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • SJR Quartile Score (2019): Q3 Environmental Science (miscellaneous)
  • SJR Quartile Score (2019): Q4 Neurology

 

  • Impact Factor (2018): 0.679
  • Scimago Journal Rank (2018): 0.261
  • SJR Hirsch-Index (2018): 25
  • SJR Quartile Score (2018): Q3 Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • SJR Quartile Score (2018): Q3 Environmental Science (miscellaneous)
  • SJR Quartile Score (2018): Q4 Neurology

Language: English

Founded in 1950
Siize: A4
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 71.
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts/li>
  • Current Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Madicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Subscribers can access the electronic version of every printed article.

Senior Editors

Editor-in-Chief: Miklósi, Ádám

Managing Editor: Molnár, Csaba

Editorial Board

Maász, Gábor - Hungarian Academy of Sciences, Centre for Ecological Research
Barina, Zoltán - Hungarian Natural History Museum, Department of Botany
Pongrácz, Péter - Eötvös Loránd University, Department of Ethology
Gábriel, Róbert - University of Pécs, Szentágothai Research Centre
Vágvölgyi, Csaba - University of Szeged, Department of Microbiology
Hideg, Éva - University of Pécs, Department of Plant Biology
Solti, Ádám - Eötvös Loránd University, Department of Plan Physiology and Molecular Plant Biology
Erős, Tibor - Hungarian Academy of Sciences, Centre for Ecological Research
Székely, Tamás - University of Bath, University of Debrecen
Dobolyi, Árpád - Eötvös Loránd University, Department of Neurobiology and Physiology
Tamás, Andrea - University of Pécs, Department of Anatomy
Kovács, Tibor - Eötvös Loránd University, Department of Genetics
Serfőző, Zoltán - Hungarian Academy of Sciences, Balaton Limnological Institute
Bede-Fazekas, Ákos - Hungarian Academy of Sciences, Centre for Ecological Research
Bugyi, Beáta - University of Pécs, Department of Biophysics
Fugazza, Claudia - Eötvös Loránd University, Department of Ethology
Chmura, Damjan - University of Bielsko-Biala, Institute of Environmental Protection and Engineering
Neugart, Susanne - Leibniz Institute of Vegetable and Ornamental Crops
Contardo-Jara, Valeska - Technical University of Berlin, Institute of Ecology