View More View Less
  • 1 Guangdong Ocean University, P. R. China
  • | 2 South China Agricultural University, P. R. China
  • | 3 Guangdong Ocean University, P. R. China
Restricted access

Introduction

We investigated the main factors affecting the efficacy of protoplast isolation, including leaf-obtaining period, cutting shapes of leaf material, enzyme concentration, enzymolysis time, and centrifugal speed.

Methods

Protoplast isolation was optimal on the condition of 20 days of leaf materials, 2-mm filament of leaves, 1.6% RS and 0.8% R-10, 80 min of enzymolysis, and 700 rpm of centrifugation, resulting in the best yield (1.19 × 106 protoplasts/g FW) and vitality (80.34%) of mesophyll protoplasts. The transient expression vector pGFP1 with green fluorescent protein was transfected into the obtained protoplasts from castor by polyethylene glycol-mediated method with a transformation efficiency of 12.37%.

Results

Moreover, the applicability of the system for studying the subcellular localization of RcFATA (an acyl-ACP thioesterase) was validated via the protoplast isolation and transient expression protocol in this study.

Discussion

Collectively, the efficient mesophyll protoplast isolation and protoplast transient expression system facilitate to analyze the function of specific gene in castor (Ricinus communis L).

  • Anthony, P., Davey, M. R., Power, J. B. (1995) An improved protocol for the culture of cassava leaf protoplasts. Plant Cell Tiss. Organ. Cult. 42, 299302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arroyo-Caro, J. M., Chileh, T., Kazachkov, M. (2013) The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant Sci. 200, 2940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Auld, D. L., Rolfe, R. D., McKeon, T. A. (2001) Development of castor with reduced toxicity. J. New Seeds 3, 6169.

  • Burris, K. P., Dlugosz, E. M., Collins, A. G. (2016) Development of a rapid, low-cost protoplast transfection system for switchgrass (Panicum virgatum L.). Plant Cell Rep. 35, 693704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., Tao, L., Zeng, L. (2010) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol. Plant Pathol. 7, 417427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davey, M. R., Anthony, P., Power, J. B. (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol. Adv. 23, 131171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Caroli, M., Lenucci, M. S., Manualdi, F. (2015) Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall. Front. Plant Sci. 6, 115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastmond, P. J. (2004) Cloning and characterization of the acid lipase from castor beans. J. Biol. Chem. 279, 4554045545.

  • Faraco, M., Di, S. G., Spelt, K. (2011) One protoplast is not the other! Plant Physiol. 156, 474478.

  • Gressel, J. (2008) Transgenics are imperative for biofuel crops. Plant Sci. 174, 246263.

  • Guo, J., Morrell-Falvey, J. L., Labbe, J. L. (2012) Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS One 7, e44908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, X., Turner, C., Chen, G. Q. (2004) Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean. Lipids 39, 311318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. U., Lee, K. R., Go, Y. S. (2011) Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol. 52, 983993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. J., Baek, K., Park, C. M. (2009) Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Rep. 28, 11591167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G. R., Huang, F. L., Wang, W. Y. (2012) Optimization of callus induct conditions of Ricinus communis anthers. J. Inner Mongolia Univ. Nat. 27, 670673.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Yang, Y. L., Yin, X. G. (2017) Expression of JcFATA gene in Jatropha curcas and its promoter cloning and analysis. J. Agric. Biotechnol. 25, 214221.

    • Search Google Scholar
    • Export Citation
  • Malathi, B., Ramesh, S., Rao, K. V. (2006) Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147, 441449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, Y., Jiang, L. (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nature Protoc. 2, 23482353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nanjareddy, K., Arthikala, M. K., Blanco, L. (2016) Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol. 16, 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patat-Ochatt, E. M., Ochatt, S. J., Power, J. B. (1988) Plant regeneration from protoplasts of apple rootstocks and scion varieties (Malus X domestica Borkh.). J. Plant Physiol. 133, 460465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raikar, S. V., Braun, R. H., Bryant, C. (2008) Efficient isolation, culture and regeneration of Lotus corniculatus protoplasts. Plant Biotechnol. Rep. 2, 171177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sailaja, M., Tarakeswari, M., Sujatha, M. (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep. 27, 15091519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas, J. J., Ohlrogge, J. B. (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys. 403, 2534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Z. M., Chen, Y. S., Huang, F. L. (2012) Effects of low temperature pretreatment and light conditions on callus induction of castor anthers. J. Inner Mongolia Univ. Nat. 27, 189193.

    • Search Google Scholar
    • Export Citation
  • Sheen, J. (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol. 127, 14661475.

  • Siritunga, D., Ariasgarzon, D., White, W. (2007) Over-expression of hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. Plant Biotechnol. J. 2, 3743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sujatha, M., Lakshminarayana, M., Tarakeswari, M. (2009) Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). Plant Cell Rep. 28, 935946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sujatha, M., Sailaja, M. (2005) Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep. 23, 803810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, R., Peng, X. Q., Xie, X. M. (2015) Protoplast isolation from elephant grass (Pennisetum purpureum ‘Huanan’) for transient gene expression. Acta. Agrectir. Sinica. 23, 571579.

    • Search Google Scholar
    • Export Citation
  • Wang, H., Wang, W., Zhan, J. (2015) An efficient PEG-mediated transient gene expression system in grape protoplasts and its application in subcellular localization studies of flavonoids biosynthesis enzymes. Sci. Hortic. 191, 8289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., Huang, W. D., Jiang, Q. (2013) Lower levels of expression of FATA 2 gene promote longer siliques with modified seed oil content in Arabidopsis thaliana. Plant Mol. Biol. Rep. 31, 13681375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J. Z., Liu, Q., Geng, X. S. (2017) Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz). BMC Biotechnol. 17, 18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, L., Liao, X., Gan, Z. (2016) Protoplast isolation and development of a transient expression system for sweet cherry (Prunus avium L.). Sci. Hortic. 209, 1421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, S. D., Cho, Y. H., Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2, 15651572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Su, J., Duan, S. (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., Wang, B., Zhou, J. (2005) Protoplast isolation of callus in Echinacea augustifolia. Colloid. Surface. B 44, 15.

The submission template is available as an MS WORD docx.

Please, download the file from HERE

 

Senior Editors

Editor-in-Chief: Miklósi, Ádám

Managing Editor: Molnár, Csaba

Editorial Board

Maász, Gábor - Hungarian Academy of Sciences, Centre for Ecological Research
Barina, Zoltán - Hungarian Natural History Museum, Department of Botany
Pongrácz, Péter - Eötvös Loránd University, Department of Ethology
Gábriel, Róbert - University of Pécs, Szentágothai Research Centre
Vágvölgyi, Csaba - University of Szeged, Department of Microbiology
Hideg, Éva - University of Pécs, Department of Plant Biology
Solti, Ádám - Eötvös Loránd University, Department of Plan Physiology and Molecular Plant Biology
Erős, Tibor - Hungarian Academy of Sciences, Centre for Ecological Research
Székely, Tamás - University of Bath, University of Debrecen
Dobolyi, Árpád - Eötvös Loránd University, Department of Neurobiology and Physiology
Tamás, Andrea - University of Pécs, Department of Anatomy
Kovács, Tibor - Eötvös Loránd University, Department of Genetics
Serfőző, Zoltán - Hungarian Academy of Sciences, Balaton Limnological Institute
Bede-Fazekas, Ákos - Hungarian Academy of Sciences, Centre for Ecological Research
Bugyi, Beáta - University of Pécs, Department of Biophysics
Fugazza, Claudia - Eötvös Loránd University, Department of Ethology
Chmura, Damjan - University of Bielsko-Biala, Institute of Environmental Protection and Engineering
Neugart, Susanne - Leibniz Institute of Vegetable and Ornamental Crops
Contardo-Jara, Valeska - Technical University of Berlin, Institute of Ecology

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts/li>
  • Current Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Madicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Biologia Futura
Language English
Size A4
Year of
Foundation
2019 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2676-8615 (Print)
ISSN 2676-8607 (Online)