View More View Less
  • 1 University of Salford, UK
Restricted access

Background and aims

Studies combining brain activity measures with behavior have the potential to reveal more about animal cognition than either on their own. However, brain measure procedures in animal studies are often practically challenging and cost-prohibitive. Therefore, we test whether a simple measure of ear temperature can be used to index hemispheric brain activation using a handheld thermoscanner. Cortisol levels are correlated with the activation of the right cortical region, implying that, when stressful situations are experienced, increased right hemisphere activation occurs. This leads to corresponding locally detectable increases in ipsilateral ear temperature.

Methods

We compared right- and left-ear temperatures of 32 domestic dogs under non-stressful and partially stressful conditions.

Results

We detected significant elevations in right-ear temperature – but not left-ear temperature – relative to baseline readings in the partially stressful condition that were not detected in the non-stressful condition.

Discussion

These findings provide encouraging support for the notion that tympanic membrane temperature readings can provide a simple index for canine hemispheric brain activation, which can be combined with data on behavioral decision-making, expectancy violations, or other measures of emotional processing. Devices are cheap, simple to use, portable, and only minimally invasive providing a means for real-time brain and behavior measurements to be conducted in real-world settings.

Supplementary Materials

    • Supplementary Material
  • Adachi, I., Kuwahata, H., Fujita, K. (2010) Dogs recall their owner’s face upon hearing the owner’s voice. Anim. Cogn. 10(1), 1721.

  • Ahern, G. L., Schwartz, G. E. (1985) Differential lateralisation for positive versus negative emotions. Neuropsychologia 23(6), 745755.

    • Search Google Scholar
    • Export Citation
  • Albuquerque, N., Guo, K., Wilkinson, A., Savalli, C., Otta, E., Mills, D. (2016) Dogs recognise dog and human emotions. Biol. Lett. 12, 20150883.

  • Altenmüller, E., Schürmann, K., Lim, V. K., Parlitz, D. (2002) Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40(13), 22422256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. A., Stocking, R. A., Meehan, J. P. (1972) Thermal relationship between tympanic membrane and hypothalamus in conscious cat and monkey. J. Appl. Physiol. 32(6), 739742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, D., Märtin, M., Bolker, B., Walker, S. (2015) Fitting linear mixed-effects models using Ime4. J. Stat. Softw. 67(1), 148.

  • Bekoff, M., Jamieson, D. (1991) Reflective ethology, applied philosophy, and the moral status of animals. In: Bateson, P., Klopfer, P. (eds.) Human Understanding and Animal Awareness: Perspectives in Ethology. Plenum, New York, pp. 158.

    • Search Google Scholar
    • Export Citation
  • Berns, G. S., Brooks, A. M., Spivak, M. (2015) Scent of the familiar: an fMRI study of canine brain responses to familiar and unfamiliar human and dog odors. Behav. Process. 110(2015), 3746.

    • Search Google Scholar
    • Export Citation
  • Boyce, W. T., Essex, M. J., Alkon, A., Smider, N. A., Pickrell, T., Kagan, J. (2002) Temperament, tympanum, and temperature: four provisional studies of the biobehavioral correlates of tympanic membrane temperature asymmetries. Child Dev. 73(3), 718733.

    • Search Google Scholar
    • Export Citation
  • Boyce, W. T., Higley, J. D., Jemerin, J. J., Champoux, M., Suomi, S. J. (1996) Tympanic temperature asymmetry and stress behavior in rhesus macaques and children. Arch. Pediatr. Adolesc. Med. 150(5), 518523.

    • Search Google Scholar
    • Export Citation
  • Brinnel, H., Cabanac, M. (1989) Tympanic temperature in a core temperature in humans. J. Therm. Biol. 14(1), 4753.

  • Cabanac, M. (1993) Selective brain cooling in humans, fancy or fact? FASEB J. 7(12), 11431147.

  • Casperd, J. M., Dunbar, R. I. (1996) Asymmetries in the visual processing of emotional cues during agonistic interactions by gelada baboons. Behavi. Process. 37(1), 5765.

    • Search Google Scholar
    • Export Citation
  • Cherbuin, N., Brinkman, C. (2004) Sensitivity of functional tympanic membrane thermometry (fTMT) as an index of hemispheric activation in cognition. Laterality 12(3), 239261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabbs, J. A. (1980) Left-right differences in cerebral blood flow and cognition. Psychophysiology 17(6), 548551.

  • Davidson, R. J. (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20(1), 125151.

  • Davidson, R. J., Fox, N. A. (1982) Asymmetrical brain activity discriminates between positive and negative affective stimuli in human infants. Am. Assoc. Adv. Sci. 218(4578), 12351237.

    • Search Google Scholar
    • Export Citation
  • Genovese, J. E., Sparks, K. E., Little, K. D. (2017) Tympanic membrane temperature and hemispheric cognitive style. J. Genet. Psychol. 178(5), 298302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greer, R. J., Cohn, L. A., Dodam, J. R., Wagner-Mann, C. C., Mann, F. A. (2007) Comparison of three methods of temperature measurement in hypothermic, euthermic and hyperthermic dogs. J. Am. Vet. Med. Assoc. 230, 18411848.

    • Search Google Scholar
    • Export Citation
  • Gunnar, M. R., Donzella, B. (2004) Tympanic membrane temperature and emotional dispositions in preschool-aged children: a methodological study. Child Dev. 75(2), 497504.

    • Search Google Scholar
    • Export Citation
  • Hall, E. J., Carter, A. (2017) Establishing a reference range for normal canine tympanic membrane temperature measured with a veterinary aural thermometer. Vet. Nurs. J. 32(12), 369373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanbury, D. B., Edens, K. D., Fontenot, M. B., Greer, T. F., McCoy, J. G., Watson, S. L. (2012) Handedness and lateralised tympanic membrane temperature in relation to approach-avoidance behaviour in Garnett’s bushbaby (Otolemur garnettii) Laterality 18(1), 120133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helton, W. S., Harynen, L., Schaeffer, D. (2009a) Sustained attention to local and global target features is different: performance and tympanic membrane temperature. Brain Cogn. 71(1), 913.

    • Search Google Scholar
    • Export Citation
  • Helton, W. S., Kern, R. P., Walker, D. R. (2009b) Tympanic membrane temperature, exposure to emotional stimuli and the sustained attention to response task. J. Clin. Exp. Neuropsychol. 31(5), 611616.

    • Search Google Scholar
    • Export Citation
  • Hewig, J., Schlotz, W., Gerhards, F., Breitenstein, C., Lürken, A., Naumann, E. (2008) Associations of the cortisol awakening response (CAR) with cortical activation asymmetry during the course of an exam stress period. Psychoneuroendocrinology 33, 8391.

    • Search Google Scholar
    • Export Citation
  • Hopkins, W. D., Fowler, L. A. (1998) Lateralized changes in tympanic membrane temperature in relation to different cognitive tasks in chimpanzees (Pan troglodytes). Behav. Neurosci. 112(1), 8388.

    • Search Google Scholar
    • Export Citation
  • Jackson, C. J. (2011) Evidence of a relationship between asymmetries in tympanic membrane temperature and lateralised sensory preferences. Laterality 16(1), 107124.

    • Search Google Scholar
    • Export Citation
  • Jones, N. A., Fox, N. A. (1992) Electroencephalogram asymmetry during emotionally evocative films and its relation to positive and negative affectivity. Brain Cogn. 20(2), 280299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalin, N. H., Larson, C., Shelton, S. E., Davidson, R. J. (1998) Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci. 112(2), 286292.

    • Search Google Scholar
    • Export Citation
  • Killgore, W. D., Yurgelum-Todd, D. A. (2007) The right-hemisphere and valence hypotheses: could they both be right (and sometimes left)? Soc. Cogn. Affect. Neurosci. 2(3), 240250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2017) ImerTest package: tests in linear mixed models. J. Statist. Softw. 82(13), 126.

    • Search Google Scholar
    • Export Citation
  • Laughlin, S. B., van Steveninck, R. R. D., Anderson, J. C. (1998) The metabolic cost of neural information. Nat. Neurosci. 1(1), 3641.

    • Search Google Scholar
    • Export Citation
  • Lee, E., Hong, J., Park, Y.-G., Chae, S., Kim, Y., Kim, D. (2015) Left brain cortical activity modulates stress effects on social behavior. Sci. Rep. 5, 13342.

    • Search Google Scholar
    • Export Citation
  • Leliveld, L. M. C., Langbein, J., Puppe, B. (2013) The emergence of emotional lateralization: evidence in non-human vertebrates and implications for farm animals. Appl. Anim. Behav. Sci. 145(1–2), 114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, S. R. (2005) Handbook of Applied Dog Behavior and Training, Procedures and Protocols. Blackwell Publishing, Iowa.

  • MacNeilage, P. F., Rogers, L. J., Vallortigara, G. (2009) Origins of the left and right brain. Sci. Am. 201(1), 6067.

  • Mariak, Z., Lewko, J., Jadeszko, J., Dudek, H. (1994) Cerebral and related temperatures in normothermic subjects. In: Milton, A. S. (ed.), Temperature Regulation: Recent Physiological and Pharmacological Advances. Birkhduser, Basel, Switzerland, pp. 139144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariak, Z., White, M. D., Lyson, T., Lewko, K. (2003) Tympanic temperature reflects intracranial temperature changes in humans. Eur. J. Physiol. 446(2), 279284.

    • Search Google Scholar
    • Export Citation
  • Mazzotti, G. A., Boere, V. (2009) The right ear but not the left ear temperature is related to stress-induced cortisolaemia in the domestic cat (Felis catus). Laterality 14(2), 196204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meiners, M. L., Dabbs, J. A. (1977) Ear temperature and brain blood flow: laterality effects. Bull. Psychonom. Soc. 10(3), 194196.

  • Müller, C. A., Mayer, C., Dörrenberg, S., Huber, L., Range, F. (2011) Female but not male dogs respond to a size constancy violation. Biol. Lett. 7(5), 689691.

    • Search Google Scholar
    • Export Citation
  • Ogawa, T. (1994) Measurement of tympanic temperature and its significance in physiology and pathophysiology. Biomed. Thermol. 13(1), 163172.

    • Search Google Scholar
    • Export Citation
  • Parr, L. A., Hopkins, W. D. (2000) Brain temperature asymmetries and emotional perception in chimpanzees (Pan troglodytes). Physiol. Behav. 71(3–4), 363371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Propper, R. E., Brunyé, T. T. (2013) Lateralized difference in tympanic membrane temperature: emotion and hemispheric activity. Front. Psychol. 4(104), 17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team. (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Retrieved from http://www.R-project.org

    • Search Google Scholar
    • Export Citation
  • Riemer, S., Assis, L., Pike, T. W., Mills, D. S. (2016) Dynamic changes in ear temperature in relation to separation distress in dogs. Physiol. Behav. 167, 8691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, L. J. (2010) Relevance of brain and behavioural lateralization to animal welfare. Applied Anim. Behav. Sci. 127(1–2), 111.

    • Search Google Scholar
    • Export Citation
  • Schneider, L. A., Delfabbro, P. H., Burns, N. R. (2013) Temperament and lateralization in the domestic dog (Canis familiaris). J. Vet. Behav. 8(1), 124134.

    • Search Google Scholar
    • Export Citation
  • Siniscalchi, M., Sasso, R., Pepe, A. M., Vallortigara, G., Quaranta, A. (2010) Dogs turn left to emotional stimuli. Behav. Brain Res. 208(2), 516521.

    • Search Google Scholar
    • Export Citation
  • Stewart, L., MacLean, E. L., Ivy, D., Woods, V., Cohen, E., Rodriguez, K., McIntyre, M., Mukherjee, S., Call, J., Kaminski, J., Miklósi, Á., Wrangham, R. W., Hare, B. (2015) Citizen science as a new tool in dog cognition research. PLoS One 10(9), e0135176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swift, A. B. (1991) Tympanic thermometry: an index of hemispheric activity. Percept. Mot. Skills 73(1), 275293.

  • Tanabe, K., Takaori, S. (1964) Effects of cooling and warming of the common carotid arteries on the brain and tympanic membrane temperatures in the rabbit. Jpn. J. Pharmacol. 14(1), 14671479.

    • Search Google Scholar
    • Export Citation
  • Tomaz, C., Verburg, M. S., Boere, V., Pianta, T. F., Belo, M. (2003) Evidence of hemispheric specialisation in marmosets (Callithrix penicillata) using tympanic membrane thermometry. Braz. J. Med. Biol. Res. 36, 913918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turhan, C., Desmond, J. E., Zhao, Z., Glover, G., Gabrieli, J. D. E. (1998) Hemispheric asymmetry for emotional stimuli detected with fMRI. NeuroReport 9(14), 32333232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, R. (2003) Measuring variation in linear mixed effects models. Stat. Med. 22(22), 35273541.

The submission template is available as an MS WORD docx.

Please, download the file from HERE

 

Senior Editors

Editor-in-Chief: Miklósi, Ádám

Managing Editor: Molnár, Csaba

Editorial Board

Maász, Gábor - Hungarian Academy of Sciences, Centre for Ecological Research
Barina, Zoltán - Hungarian Natural History Museum, Department of Botany
Pongrácz, Péter - Eötvös Loránd University, Department of Ethology
Gábriel, Róbert - University of Pécs, Szentágothai Research Centre
Vágvölgyi, Csaba - University of Szeged, Department of Microbiology
Hideg, Éva - University of Pécs, Department of Plant Biology
Solti, Ádám - Eötvös Loránd University, Department of Plan Physiology and Molecular Plant Biology
Erős, Tibor - Hungarian Academy of Sciences, Centre for Ecological Research
Székely, Tamás - University of Bath, University of Debrecen
Dobolyi, Árpád - Eötvös Loránd University, Department of Neurobiology and Physiology
Tamás, Andrea - University of Pécs, Department of Anatomy
Kovács, Tibor - Eötvös Loránd University, Department of Genetics
Serfőző, Zoltán - Hungarian Academy of Sciences, Balaton Limnological Institute
Bede-Fazekas, Ákos - Hungarian Academy of Sciences, Centre for Ecological Research
Bugyi, Beáta - University of Pécs, Department of Biophysics
Fugazza, Claudia - Eötvös Loránd University, Department of Ethology
Chmura, Damjan - University of Bielsko-Biala, Institute of Environmental Protection and Engineering
Neugart, Susanne - Leibniz Institute of Vegetable and Ornamental Crops
Contardo-Jara, Valeska - Technical University of Berlin, Institute of Ecology

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts/li>
  • Current Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Madicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Biologia Futura
Language English
Size A4
Year of
Foundation
2019 (1950)
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2676-8615 (Print)
ISSN 2676-8607 (Online)