View More View Less
  • 1 University of Zanjan, Iran
  • 2 Buali Sina University, Iran
Restricted access

Purpose

This study aims to characterize plant growth-promoting rhizobacteria (PGPR) in sunflowers growing in different locations at North West of Iran.

Materials and methods

Sunflower plants were collected from different regions of West Azarbaijan, and rhizospheric bacterial strains were isolated and screened for PGP traits. Identification and characterization of the PGPR were conducted based on 16s rDNA sequences and phenotypic analysis, the strains clustered for genetic diversity by rep-PCR method.

Results

Among the 80 bacterial isolates, 20 showed PGP traits and were selected for other potentials. All the selected isolates produced indole-3-acetic acid at the rate of 9.2–33.7 mg/ml. In addition, 13, 15, 12, and 16 were positive for phosphate solubilization, siderephore, hydrogen cyanide, and ammonia production, respectively. The results from a subsequent pot experiment indicated that PGPRs distinctly increased sun flower shoot and root length, shoot and root fresh weight, as well as shoot and root dry weight. Based on 16S rDNA sequences and biochemical and physiological characteristics, 20 PGPRs were identified as Pseudomonas fluorescens (five isolates), Pseudomonas aeruginosa (four isolates), Pseudomonas geniculata (one isolate), Bacillus subtilis (four isolates), Bacillus pumilus (two isolates), Stenotrophomonas maltophilia (two isolates), and Brevibacterium frigoritolerans (two isolates). In rep-PCR, PGPR isolates were differentiated into seven clusters (A–G) at 65% similarity level. These results demonstrated the existence of a considerable species richness and genetic diversity among PGPRs isolated from different regions of North West of Iran.

Conclusions

To the best of our knowledge, this is first report for the identification and characterization of B. frigoritolerans as PGPR in sunflower plants.

  • Ambrosini, A., Beneduzi, A., Stefanski, T., Pinheiro, F. G., Vargas, L. K., Passaglia, L. M. (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil. 356, 245264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, G., Egamberdieva, D., Lugtenberg, B., Hagemann, M. (2010) Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by Stenotrophomonas. In: Seckbach J. M. G., Grube M. (eds) Symbiosis and Stress. Springer, Dordrecht, The Netherlands, pp. 445460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertrand, H., Nalin, R., Bally, R., Cleyet-Marel, J. (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol. Fertil. Soil. 33, 152156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biswas, J. C., Ladha, J. K., Dazzo, F. B. (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Comm. Soil Sci. Plant Analys. 64, 16441650.

    • Search Google Scholar
    • Export Citation
  • Brick, J. M., Bostock, R. M., Silverstone, S. E. (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl. Environ. Microbiol. 57, 535538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cakmakci, R., Kantar, F., Sahin, F. (2001) Effect of nitrogen fixing bacterial inoculations on yield of sugar beet and barley. J. Plant Nut. Soil Sci. 164, 527531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cappuccino, J. C., Sherman, N. (1992) Microbiology: A Laboratory Manual. Benjamin/Cummings, New York, NY.

  • Dimkpa, C., Svatos, A., Merten, D., Büchel, G., Kothe, E. (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J. Microbiol. 54, 163172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinesh, R., Anandaraj, M., Kumar, A., Kundil, Y., Subila, K. P., Aravind, R. (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microb. Res. 173, 3443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egamberdieva, D. 2011. Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant. Soil. Environ. 57, 1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FAO. (2016) Top Sunflower Production: Food and Agriculture Organization of the United Nations. FAO, Rome.

  • Gaur, A. C. (1990) Physiological functions of phosphate solubilizing microorganisms. Phosphate solubilizing microorganisms as biofertilizers. Omeg. Sci. Publish. 5, 1672.

    • Search Google Scholar
    • Export Citation
  • Gerhardt, K. E., Huang, X. D., Glick, B. R., Greenberg, B. M. (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176, 2030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghaffari, M. 2006. Sunflower Production Guide. Agricultural and Natural Resources. Research Center of West Azerbaijan, Urmia, Iran, p. 4.

    • Search Google Scholar
    • Export Citation
  • Glickmann, E., Dessaux, Y. (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, S. A., Weber, R. P. (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192.

  • Kim, O. S, Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., Chun, J. (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Micrbiol. 62, 71621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, M. A. (1980) Simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloepper, J. W., Hume, K. J., Scher, F. M., Singleton, C., Tipping, B., Laliberte, M., Frauley, K., Kutchaw, T., Simonson, C., Lifshitz, R., Zaleska, I., Lee, L. (1988) Plant growth promoting rhizobacteria (PGPR) on canola (rapeseed). Plant Dis. 72, 4246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurabachew, H., Wydra, K. (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol Control. 67, 7583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorck, H. (1948) Production of hydrocyanic acid by bacteria. Physiologia. Plantarum. 1, 142146.

  • Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., Shirkot, C. K. (2014) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. J. Basic. Microbiol. 53, 112.

    • Search Google Scholar
    • Export Citation
  • Rahman, A., Sitepu, I. R., Tang, S., Hashidoko, Y. (2010) Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosc. Biotechnol. Biochem. 74, 22022208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Díaz, M., Rodelas-Gonzalés, B., Pozo-Clemente, C., Martínez-Toledo, M. V., González-López, J. (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Ahmad I., Pichtel J., Hayat S. (eds.) Plant-Bacteria Interactions: Strategies and Techniques to Promote Plant Growth. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, pp. 5580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roesch, L. F. W., Triplett, E. W., de Quadros, P. D., Camargo, F. A. O. (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World. J. Microb. Biotechnol. 23, 13771383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rohlf, F. J. (1993) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System. Version 2.0. Exeter Software, New York, NY.

  • Rouhrazi, K., Rahimian, H. (2015) Phenotypic and genotypic diversity of root-nodulating bacteria isolated from chickpea (Cicer arietinum L.) in Iran. Ann. Microbiol. 65, 22192227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., Berg, G., van der Lelie, D., Dow, J. M. (2009) Versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Microbiol. Rev. 7, 514525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahin, F., Cakmakci, R., Kantar, F. (2004) Sugar beet and barley yields in relation to inoculation with nitrogen fixing and phosphate solubilizing bacteria. Plant Soil. 265, 123129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saitou, N., Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406425.

    • Search Google Scholar
    • Export Citation
  • Schwyn, B., Neilands, J. B. (1987) Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 4756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaharoona, B., Arshad, M., Zahir, Z. A., Khalid, A. (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil. Biol. Biochem. 38, 29712975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Speck, M. L. (1976) Compendium of Methods for Examination of Food Microbiological. American Public Health Association, Washington, DC.

    • Search Google Scholar
    • Export Citation
  • Sun, G., Yao, T., Feng, C., Chen, L., Li, J., Wang, L. (2017) Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus . Biol. Control. 104, 3543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 27312739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Versalovic, J., Schneider, M., de Bruijn, F. J., Lupski, J. R. (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Meth. Cell. Molec. Biol. 5, 2540.

    • Search Google Scholar
    • Export Citation
  • Weisburg, W. G., Barns, S. M., Pelletior, D. A., Lanem, D. J. (1991) 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., Ruan, Y., Wang, B., Zhang, J., Waseem, R., Huang, Q., Shen, Q. (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J. Agric. Food. Chem. 61, 37743780.

    • Crossref
    • Search Google Scholar
    • Export Citation