Tartary buckwheat, known for its rich source of health beneficial secondary metabolites, is cultivated in many areas of the world. Among different environmental factors, photoperiod strongly influence its growth, flowering time, and ultimately the yield. In this context, epigenetics could contribute significantly in the regulation of plant response against changing environment. Therefore, with the aim to study the involvement of DNA methylation in photoperiod mediated plant response, genome-wide DNA methylation analysis was performed in two accessions (A1 and A2) of Tartary buckwheat using three photoperiodic treatments, i.e., 10-hr light/day (T1), 12-hr light/day (T2), and 14-hr light/day (T3). Flowering time and plant fresh weight data revealed that accessions A1 and A2 prefer T1 and T2 treatments, respectively. Total DNA methylation ratio increased with the increase in photoperiod in accession A1 but decreased under same conditions in accession A2. Full methylation increased significantly while intensive decrease in hemimethylation was noted from T2 to T3 in A1, whereas full methylation strongly increased and hemimethylation strongly decreased from T1 to T2 in A2. Overall, the DNA methylation events appeared more frequently than demethylation events. This study reports for the first time an accession-/genotype specific pattern of shift in the DNA methylation under different photoperiodic treatments that will pave the way toward identification of specific genes involved in the regulation of plant response against photoperiodic stress.
Abbasi, E., Nassiri-Asl, M., Sheikhi, M., Shafiee, M. (2013) Effects of vitexin on scopolamine-induced memory impairment in rats. Chin. J. Physiol. 56, 184–189.
Alakärppä, E., Salo, H. M., Valledor, L., Cañal, M. J., Häggman, H., Vuosku, J. (2018) Natural variation of DNA methylation and gene expression may determine local adaptations of Scots pine populations. J. Exp. Bot. 69, 5293–5305.
Baurens, F.-C., Bonnot, F., Bienvenu, D., Causse, S., Legavre, T. (2003) Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Mol. Biol. Report. 21, 339–348.
Beales, J., Turner, A., Griffiths, S., Snape, J. W., Laurie, D. A. (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). TAG Theor. Appl. Genet. Theor. Angew. Genet. 115, 721–733.
Bentley, A. R., Horsnell, R., Werner, C. P., Turner, A. S., Rose, G. A., Bedard, C., Howell, P., Wilhelm, E. P., Mackay, I. J., Howells, R. M., Greenland, A., Laurie, D. A., Gosman, N. (2013) Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles. J. Exp. Bot. 64, 1783–1793.
Bentley, A. R., Turner, A. S., Gosman, N., Leigh, F. J., Maccaferri, M., Dreisigacker, S., Greenland, A., Laurie, D. A. (2011) Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed. 130, 10–15.
Brutch, N., Matvienko, I., Porokhovinova, E., Pavlov, A., Nozkova, J., Koshkin, V. (2019) Effect of photoperiod on Linum usitatissimum L. characters. J. Nat. Fibers 0, 1–10.
Choi, J. Y., Cho, E. J., Lee, H. S., Lee, J. M., Yoon, Y.-H., Lee, S. (2013) Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 53, 105–111.
Ding, G.-H., Guo, D.-D., Guan, Y., Chi, C.-Y., Liu, B.-D. (2019) Changes of DNA methylation of Isoetes sinensis under Pb and Cd stress. Environ. Sci. Pollut. Res. 26, 3428–3435.
Duan, W., Zhang, H., Zhang, B., Wu, X., Shao, S., Li, Y., Hou, X., Liu, T. (2017) Role of vernalization-mediated demethylation in the floral transition of Brassica rapa. Planta 245, 227–233.
Endo, M., Araki, T., Nagatani, A. (2016) Tissue-specific regulation of flowering by photoreceptors. Cell. Mol. Life Sci. CMLS 73, 829–839.
González, R. M., Ricardi, M. M., Iusem, N. D. (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics Off. J. DNA Methylation Soc. 8, 864–872.
Guo, X., Zhu, K., Zhang, H., Yao, H. (2007) Purification and characterization of the antitumor protein from Chinese Tartary buckwheat (Fagopyrum tataricum Gaertn.) water-soluble extracts. J. Agric. Food Chem. 55, 6958–6961.
Guzy-Wrobelska, J., Filek, M., Kaliciak, A., Szarejko, I., Macháčková, I., Krekule, J., Barciszewska, M. (2013) Vernalization and photoperiod-related changes in the DNA methylation state in winter and spring rapeseed. Acta Physiol. Plant. 35, 817–827.
Hara, T., Iwata, H., Okuno, K., Matsui, K., Ohsawa, R. (2011) QTL analysis of photoperiod sensitivity in common buckwheat by using markers for expressed sequence tags and photoperiod-sensitivity candidate genes. Breed. Sci. 61, 394–404.
Hara, T., Ohsawa, R. (2013) Accurate evaluation of photoperiodic sensitivity and genetic diversity in common buckwheat under a controlled environment. Plant Prod. Sci. 16, 247–254.
Ikeda, Y., Nishimura, T. (2015) The role of DNA methylation in transposable element silencing and genomic imprinting. In: Pontes, O., Jin, H. (eds.) Nuclear Functions in Plant Transcription, Signaling and Development. Springer, New York, NY, pp. 13–29.
Kaleem, F., Shabir, G., Aslam, K., Rasul, S., Manzoor, H., Shah, S. M., Khan, A. R. (2018) An overview of the genetics of plant response to salt stress: present status and the way forward. Appl. Biochem. Biotechnol. 186, 306–334.
Kapazoglou, A., Ganopoulos, I., Tani, E., Tsaftaris, A. (2018) Epigeneticsepigenomics and crop improvement. In: Kuntz, M. (ed.) Advances in Botanical Research (Vol. 86). Academic Press, San Diego, CA, pp. 287–324.
Khan, A. R., Enjalbert, J., Marsollier, A.-C., Rousselet, A., Goldringer, I., Vitte, C. (2013) Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat. BMC Plant Biol. 13, 209.
Kim, Y. K., Li, X., Xu, H., Park, N. I., Uddin, M. R., Pyon, J. Y., Park, S. U. (2009) Production of phenolic compounds in hairy root culture of Tartary buckwheat (Fagopyrum tataricum Gaertn). J. Crop Sci. Biotechnol. 12, 53–57.
Kondhare, K. R., Malankar, N. N., Devani, R. S., Banerjee, A. K. (2018) Genome-wide transcriptome analysis reveals small RNA profiles involved in early stages of stolon-to-tuber transitions in potato under photoperiodic conditions. BMC Plant Biol. 18, 284.
Matsui, T., Kudo, A., Tokuda, S., Matsumoto, K., Hosoyama, H. (2010) Identification of a new natural vasorelaxatant compound, (+)-osbeckic acid, from rutin-free Tartary buckwheat extract. J. Agric. Food Chem. 58, 10876–10879.
Mousavi, S., Regni, L., Bocchini, M., Mariotti, R., Cultrera, N. G. M., Mancuso, S., Googlani, J., Chakerolhosseini, M. R., Guerrero, C., Albertini, E., Baldoni, L., Proietti, P. (2019) Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Sci. Rep. 9, 1093.
Murray, M. G., Thompson, W. F. (1980) Rapid isolation of high molecular weight plant DNA. Nucl. Acids Res. 8, 4321–4325.
Němcová, L., Zima, J., Barek, J., Janovská, D. (2011) Determination of resveratrol in grains, hulls and leaves of common and Tartary buckwheat by HPLC with electrochemical detection at carbon paste electrode. Food Chem. 126, 374–378.
Pavel, A. B., Vasile, C. I. (2012) PyElph – A software tool for gel images analysis and phylogenetics. BMC Bioinformatics. 13, 9.
Ren, Q., Wu, C., Ren, Y., Zhang, J. (2013) Characterization and identification of the chemical constituents from Tartary buckwheat (Fagopyrum tataricum Gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry. Food Chem. 136, 1377–1389.
Reyna-López, G. E., Simpson, J., Ruiz-Herrera, J. (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol. Gen. Genet. MGG 253, 703–710.
Roden, L. C., Song, H.-R., Jackson, S., Morris, K., Carre, I. A. (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 99, 13313–13318.
Romanova, O. I., Fesenko, A. N., Fesenko, N. N., Fesenko, I. N., Koshkin, V. A. (2018) Chapter 22 – Buckwheat resources in the VIR (Russia) collection: the photoperiod response. In: Zhou, M., Kreft, I., Suvorova, G., Tang, Y., Woo, S. H. (eds.) Buckwheat Germplasm World. Academic Press, London, UK, pp. 225–234.
Serrano-Bueno, G., Romero-Campero, F. J., Lucas-Reina, E., Romero, J. M., Valverde, F. (2017) Evolution of photoperiod sensing in plants and algae. Curr. Opin. Plant Biol. 37, 10–17.
Shafiq, S., & Khan, A. R. (2015) Plant epigenetics and crop improvement. In: Barh, D., Khan, M. S., Davies, E. (eds.) PlantOmics: The Omics of Plant Science. Springer, New Delhi, India, pp. 157–179.
Skok, J., Scully, N. J. (1955) Nature of the photoperiodic responses of buckwheat. Bot. Gaz. 117, 134–141.
Song, Y. H., Shim, J. S., Kinmonth-Schultz, H. A., Imaizumi, T. (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66, 441–464.
Sun, L., Miao, X., Cui, J., Deng, J., Wang, X., Wang, Y., Zhang, Y., Gao, S., Yang, K. (2018) Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across different salt stress in Maize (Zea mays L.). Euphytica 214, 25.
Takeno, K. (2010) Epigenetic regulation of photoperiodic flowering. Plant Signal. Behav. 5, 788–791.
Wang, M., Liu, J.-R., Gao, J.-M., Parry, J. W., Wei, Y.-M. (2009) Antioxidant activity of Tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. J. Agric. Food Chem. 57, 5106–5112.
Yao, Y., Shan, F., Bian, J., Chen, F., Wang, M., Ren, G. (2008) D-chiro-inositol-enriched Tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. J. Agric. Food Chem. 56, 10027–10031.
Zhao, J., Jiang, L., Tang, X., Peng, L., Li, X., Zhao, G., Zhong, L. (2018) Chemical composition, antimicrobial and antioxidant activities of the flower volatile oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. Molecules 23, 182.