Fractured fluid reservoirs are of key importance for recovering water and hydrocarbon supplies and geothermal energy, or in predicting the subsurface flow of pollutants. There are several fractured metamorphic-basement HC reservoirs in the Pannonian Basin; one of the largest among them is the Szeghalom Dome in SE Hungary. Previous production and fluid inclusion data infer that in this case several unconnected fluid regimes must coexist in the basement, making modeling of the fracture network essential. Because the representative volume of a fractured rock mass is usually too large to measure hydraulic properties directly, stochastic calculations should be carried out, which are consistent with observed deformation history and stochastic patterns. Input statistical data (orientation, length, distribution, fractal dimension for fracture seeds) were determined for amphibolite and gneiss samples representing the Szeghalom Dome. Data were measured simultaneously using binocular microscope and computerized X-ray tomography. Comparison of the two data sets suggests that they are comparable and both can be used for modeling. A new computer program, called REPSIM has been developed recently, which follows a fractal geometry-based discrete fracture network (DFN) algorithm to simulate the fracture network. The evaluation of simulated networks suggests that amphibolite and gneiss-dominated parts of the basement behave differently; large amphibolite bodies have a connected fracture network, while gneiss domains usually are well below the percolation threshold.
Zhang, X., D. J. Sanderson, R. M. Harkness, N. C. Last 1996: Evaluation of the 2-D permeability tensor for fractured rock masses. - Int. J. Rock Mech. Min Sci. and Geomech. Abst., 33/1, pp. 17 - 37 .
'Evaluation of the 2-D permeability tensor for fractured rock masses. - ' () 33 Int. J. Rock Mech. Min Sci. and Geomech. Abst. : 17 -37 .
Barton, C., C. 1995: Fractal analysis of scaling and spatial clustering of fractures. - In: C. Barton C., P. R. La Pointe (Eds): Fractals in the Earth Sciences. Plenum Press, New York, 168 p.
Fractal analysis of scaling and spatial clustering of fractures , () 168 .
Carrera, J., J. Heredia, S. Vomvoris, P. Hufschmied 1990: Modeling of flow on a small fractured monzonitic gneiss block. - In: S. Neuman P., I. Neretnieks (Eds): Hydrogeology of low permeability environments. International Association of Hydrogeologists, Hydrogeology, Selected papers, 2, pp. 115 - 167 .
Lodblac;rincz, D., K. 1996: Feszültségtér történet meghatározása szeizmikus szelvényeken azonositott többfázisú tektonizmus alapján, a Szolnoki flis öv nyugati peremén (Determination of stress-field history on the basis of multiphase tectonism identified in seismic profiles in the Western part of the Szolnok flysch belt). - Magyar Geofizika, 37/4, pp. 228 - 246 .
'Feszültségtér történet meghatározása szeizmikus szelvényeken azonositott többfázisú tektonizmus alapján, a Szolnoki flis öv nyugati peremén (Determination of stress-field history on the basis of multiphase tectonism identified in seismic profiles in the Western part of the Szolnok flysch belt). - ' () 37 Magyar Geofizika : 228 -246 .
Dershowitz, W., S., H. H. Einstein 1988: Characterizing rock joint geometry with joint system models. - Rock Mechanics and Rock Engineering, 21, pp. 21 - 51 .
'Characterizing rock joint geometry with joint system models. - ' () 21 Rock Mechanics and Rock Engineering : 21 -51 .
Hewett, T., A. 1995: Fractal Methods for Fracture Characterization. - In: J. Yarus M., R. L. Chambers (Eds): Stochastic Modeling and Geostatistics. Principles, Methods and Case Studies. AAPG Computer Applications in Geology, 3, AAPG, Tulsa, 379 p.
Hirata, T., 1989: Fractal dimension of fault system in Japan: fracture structure in rock fracture geometry at various scales. - Pure Appl. Geophys., 131, pp. 157 - 170 .
'Fractal dimension of fault system in Japan: fracture structure in rock fracture geometry at various scales. - ' () 131 Pure Appl. Geophys. : 157 -170 .
Horváth, F., S. Cloething 1996: Stress-induced late-stage subsidence anomalies in the Pannonian basin. - Tectonophysics, 266, pp. 287 - 300 .
'Stress-induced late-stage subsidence anomalies in the Pannonian basin. - ' () 266 Tectonophysics : 287 -300 .
Juhász, A., T. M Tóth, K. Ramseyer, A. Matter 2002: Connected fluid evolution in fractured crystalline basement and overlying sediments, Pannonian Basin, SE Hungary. - Chemical Geology, 182, pp. 91 - 120 .
'Connected fluid evolution in fractured crystalline basement and overlying sediments, Pannonian Basin, SE Hungary. - ' () 182 Chemical Geology : 91 -120 .
Korvin, G., 1992: Fractal Models in the Earth Sciences. - Elsevier, 396 p.
Fractal Models in the Earth Sciences , () 396 .
Kranz, R., L. 1994: Fractal point patterns and fractal fracture traces. - In: R. Nelson A., S. E. Laubach (Eds): Rock Mechanics. Balkema, Rotterdam, pp. 793 - 800 .
Fractal point patterns and fractal fracture traces , () 793 -800 .
La Pointe, P.R. 1988: A method to characterize fracture density and connectivity through fractal geometry. - Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, pp. 421 - 429 .
'A method to characterize fracture density and connectivity through fractal geometry. - ' () 25 Int. J. Rock Mech. Min. Sci. Geomech. Abstr. : 421 -429 .
Childs, C., J. J. Walsh, J. Watterson 1997: Complexity in fault zone structure and implication for fault seal prediction. - In: Moller-Pedersen, P., A. G. Koestler (Eds): Hydrocarbon Seals. Elsevier, 262 p.
Complexity in fault zone structure and implication for fault seal prediction , () 262 .
Chiles, J., G. de Marsily 1993: Models of fracture Systems.- In: J. Bear, C. F. Tsang, G. de Marsily (Eds): Flow and Contaminant Transport in Fractured Rock. Academic Press, INC, 551 p.
Models of fracture Systems , () 551 .
Csontos, L., A. Nagymarosy 1998: The Mid-Hungarian line: a zone of repeated tectonic inversion. - Tectonophysics, 297, pp. 51 - 71 .
'The Mid-Hungarian line: a zone of repeated tectonic inversion. - ' () 297 Tectonophysics : 51 -71 .
Loiseau, P., 1987: Correlations between parameters. - In: J. Bear, C. F. Tsang, G. de Marsily (Eds): Flow and Contaminant Transport in Fractured Rock. Academic Press, INC, 185 p.
Correlations between parameters , () 185 .
Long, J., C. S. (Ed.) 1996: Rock fractures and fluid flow: contemporary understanding and applications. - National Academy Press, Washington D. C ., 551 p.
Rock fractures and fluid flow: contemporary understanding and applications , () 551 .
Tóth, M., T., F. Schubert, J. Zachar 2000: Neogene exhumation of the Variscan Szeghalom dome, Pannonian Basin, E. Hungary. - Journal of Geology, 35/3-4, pp. 265-284.
'Neogene exhumation of the Variscan Szeghalom dome, Pannonian Basin, E. Hungary ' () 35 Journal of Geology : 265 -284 .
Tóth, M., T., M. Kedves, F. Schubert 2003: Exhumation of the metamorphic basement of the Pannonian Basin (Szeghalom Dome, SE Hungary): Palynological constraints. - Földt. Közl., 133/4, pp. 547 - 562 (In Hungarian with English abstract).
'Exhumation of the metamorphic basement of the Pannonian Basin (Szeghalom Dome, SE Hungary): Palynological constraints. - ' () 133 Földt. Közl. : 547 -562 .
Tóth, M., T., J. Zachar 2003: Evolution of the Déva orthogneiss (Tisza block, Hungary) and its geodynamic consequences. - Journal of the Czech Geological Society, 48/1-2, pp. 127 - 128 .
'Evolution of the Déva orthogneiss (Tisza block, Hungary) and its geodynamic consequences ' () 48 Journal of the Czech Geological Society : 127 -128 .
Mandelbrot, B., B. 1983: The Fractal Geometry of Nature. - Freeman, New York, 468 p.
The Fractal Geometry of Nature , () 468 .
Mandelbrot, B., B. 1985: Self-affine fractal dimension. - Physica Scripta, 32, pp. 257 - 260 .
'Self-affine fractal dimension. - ' () 32 Physica Scripta : 257 -260 .
Matsumoto, N., K. Yomogida, S. Honda 1992: Fractal analysis of fault systems in Japan and the Philippines. - Geophys. Res. Lett., 19/4, pp. 357 - 360 .
'Fractal analysis of fault systems in Japan and the Philippines. - ' () 19 Geophys. Res. Lett. : 357 -360 .
Neuman, S., P. 1990: Universal scaling of hydraulic conductivities and dispertivities in geologic media. - Water Resources Research, 26/8, pp. 1749 - 1758 .
'Universal scaling of hydraulic conductivities and dispertivities in geologic media. - ' () 26 Water Resources Research : 1749 -1758 .
Paillet, F., L., R. T. Kay, D. Yeskis, W. Pedler 1993: Integrating well logs into a multi-scale investigation of a fractured sedimentary aquifer. - The Log Analyst, 34/1, pp. 13 - 23 .
'Integrating well logs into a multi-scale investigation of a fractured sedimentary aquifer. - ' () 34 The Log Analyst : 13 -23 .
Tari, G., P. Dövényi, I. Dunkl, F. Horváth, L. Lenkey, M. Stefanescu, P. Szafián, T. Tóth 1999: Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. - In: B. Durand, L. Jolivet, F. Horváth, M. Séranne (Eds): The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, 156, pp. 215 - 250 .
Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data , () 215 -250 .
Tsuchiya, N., K. Nakatsuka 1995: A two-dimensional mono-fractal approach to natural fracture networks in rock. - Geotherm. Sci. Tech., 6, pp. 63 - 82 .
'A two-dimensional mono-fractal approach to natural fracture networks in rock. - ' () 6 Geotherm. Sci. Tech. : 63 -82 .
Turcotte, D., L. 1992: Fractals and Chaos in Geology and Geophysics. - Cambridge University Press, 221 p.
Fractals and Chaos in Geology and Geophysics , () 221 .
Wang, M., P.H.S.W. Kulatilake, J. Um, J. Narvaiz 2002: Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modelling. - Int. J. Rock Mech. Min. Sci., 39, pp. 887 - 904 .
'Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modelling. - ' () 39 Int. J.Rock Mech. Min. Sci. : 887 -904 .
Yielding, G., J. J. Walsh, J. Watterson 1992: The prediction of small-scale faulting in reservoirs. - First Break, 10, pp. 449 - 460 .
'The prediction of small-scale faulting in reservoirs. - ' () 10 First Break : 449 -460 .
Zachar, J., T. M Tóth 2003: Xenoliths of various metamorphic evolutions in the Déva orthogneiss (Tisza block, Hungary). - Journal of the Czech Geological Society, 48/1-2, pp. 137 - 138 .
'Xenoliths of various metamorphic evolutions in the Déva orthogneiss (Tisza block, Hungary) ' () 48 Journal of the Czech Geological Society : 137 -138 .
Albu, I., A. Pápa 1992: Application of high-resolution seismics in studying reservoir characteristics of hydrocarbon deposits in Hungary. - Geophysics, 57/8, pp. 1068 - 1088 .
'Application of high-resolution seismics in studying reservoir characteristics of hydrocarbon deposits in Hungary. - ' () 57 Geophysics : 1068 -1088 .
Barton, C., C., E. Larsen 1985: Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwestern Nevada. - In: O. Stephanson (Ed.): Proc. Int. Symp. on Fundamentals of Rock Joints, pp. 77 - 84 .
, , .
Pap, S., V. Sodblac;reg, I. Pap-Hasznos 1992: A Dévaványa-déli metamorf medencealjzati szerkezet szénhidrogénkutatási problémái - esettanulmány (Exploration of the Dévaványa-south basement structure for hydrocarbons - a case history). - Geophysical Transactions, 37/2-3, pp. 211 - 228 .
'A Dévaványa-déli metamorf medencealjzati szerkezet szénhidrogénkutatási problémái - esettanulmány (Exploration of the Dévaványa-south basement structure for hydrocarbons - a case history) ' () Geophysical Transactions : 211 -228 .
Priest, S., D., J. Hudson 1976: Discontinuity spacing in rock. - Int. J. Rock Mech. Min. Sci., 13, pp. 135 - 148 .
'Discontinuity spacing in rock. - ' () 13 Int. J. Rock Mech. Min. Sci. : 135 -148 .
Roberts, S., D. J. Sanderson, P. Gumiel 1998: Fractal analysis of the Sn-W mineralization from central Iberia: Insights into the role of fracture connectivity in the formation of an ore deposit. - Economic Geology, 93, pp. 360 - 365 .
'Fractal analysis of the Sn-W mineralization from central Iberia: Insights into the role of fracture connectivity in the formation of an ore deposit. - ' () 93 Economic Geology : 360 -365 .
Schubert, F., 2003: Reconstruction of HC-bearing fluid migration in the Szeghalom Dome (SE Hungary). - PhD theses, in Hungarian, University of Szeged, 158 p.
Schubert, F., T. M Tóth 2003: Successive, isothermal hydrocarbon migration events recorded by fluid inclusions in fracture-filling quartz in the Szeghalom Dome (Pannonian Basin, SE Hungary). - Acta Miner.-Petr., in press.
Schubert, F., T. M Tóth, Z. Kele, B. Viskolcz 2003: Identification of multiple generation oil inclusions trapped in quartz single crystals using stepwise heating Chemical Ionisation Mass Spectroscopy. - Acta Miner.-Petr., Abstract Series 2, pp. 174 - 175 .
'Identification of multiple generation oil inclusions trapped in quartz single crystals using stepwise heating Chemical Ionisation Mass Spectroscopy. - ' () 2 Acta Miner.-Petr., Abstract Series : 174 -175 .
Szepesházy, K., 1973: A Duna Tisza Köze déli részének metamorf kodblac;zetei (Metamorphic rocks from the southern part of the Danube-Tisza Interfluve). - MÁFI Évi Jel., 1973-ról, pp. 147 - 166 .
Tari, G., F. Horváth, J. Rumpler 1992: Styles of extension in the Pannonian Basin. - Tectonophysics, 208, pp. 203 - 219 .
'Styles of extension in the Pannonian Basin. - ' () 208 Tectonophysics : 203 -219 .