Seismic data integration in reservoir modeling workflows is the one of the fastest-growing fields in the Earth Sciences. The actual geostatistical methods (co-kriging, stochastic simulation) can use seismic data as a secondary variable if there is a well-determined linear correlation between well log data and seismic attribute. Seismic interpreters must often increase this correlation. The application of multi-attributes via neural network may help in this case. A neural network type, called multi-layer perceptron, and its application in 3D porosity distribution prediction in a Hungarian natural gas reservoir, are described in this paper.
Hagan, M., T., H. B. Demuth, M. H. Beale 1996: Neural Network Design. - Boston, MA: PWS Publishing, 637 p.
Neural Network Design , () 637 .
Hampson, D., J. S. Schuelke, J. A. Quirein 2001: Use of multiattribute transforms to predict log properties from seismic data. - Geophysics, 66, pp. 220 - 231 .
'Use of multiattribute transforms to predict log properties from seismic data. - ' () 66 Geophysics : 220 -231 .
Haykin, S., 1999: Neural Networks - a Comprehensive Foundation. - Prentice Hall, New Jersey, 2nd edition, 842 p.
Neural Networks - a Comprehensive Foundation , () 842 .
Sinvhal, A., H. Sinvhal 1992: Seismic Modelling and Pattern Recognition in Oil Exploration. - Kluwer Academic Publishers, 178 p.
Seismic Modelling and Pattern Recognition in Oil Exploration , () 178 .
Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller 1953: Equation of State Calculations by Fast Computing Machines. - J. Chem. Phys., 21/6, pp. 1087 - 1092 .
'Equation of State Calculations by Fast Computing Machines. - ' () 21 J. Chem. Phys. : 1087 -1092 .
Rosenblatt, F., 1962: Principles of NeurodyWintershallics: Perceptrons and the Theory of Brain Mechanisms. - Washington D.C., Spartan Books, 24 p.
Principles of NeurodyWintershallics: Perceptrons and the Theory of Brain Mechanisms , () 24 .
Rumelhart, D., E., G. E. Hinton, R. Williams 1986: Learning internal representations by error propagation. - In: D. Rumelhart E., J. L. McClelland (Eds): Parallel Data Processing, vol. 1, Cambridge, MA: The M. I. T. Press, pp. 318 - 362 .
The Learning internal representations by error propagation , () 318 -362 .
Lippmann, R., P. 1989: Pattern Classification Using Neural Networks. - IEEE Communications Magazine, 27/11, pp. 47 - 50, 59-64.
'Pattern Classification Using Neural Networks. - ' () 27 IEEE Communications Magazine : 47 -50 .
Schultz, P., S. S. Ronen, M. Hattori, C. Corbett 1994: Seismic-guided estimation of log properties, Part 1: A data-driven interpretation methodology. The Leading Edge, Vol. 13/5, pp. 305-315; Part 2: Using artificial neural networks for nonlinear attribute calibration. The Leading Edge, Vol. 13/6, pp. 674 - 678; Part 3: A controlled study. The Leading Edge, 13/7, pp. 770 - 777 .
Taner, M., T., F. Koehler, R. E. Sheriff 1979: Complex seismic trace analysis. - Geophysics, 44, pp. 1041 - 1063 .
'Complex seismic trace analysis. - ' () 44 Geophysics : 1041 -1063 .
Taner, M., T. 1997: Seismic trace attributes and their projected use in prediction of rock properties and seismic facies. - Rock Solid Images technical publication, http://www.rocksolidimages.com
Seismic trace attributes and their projected use in prediction of rock properties and seismic facies , ().
Todorov, T., R. Stewart, D. Hampson, B. Russell 1998: Well Log Prediction Using Attributes from 3C-3D Seismic Data. - CREWES Research Report - Vol. 10 52 1 -52-13.
'Well Log Prediction Using Attributes from 3C-3D Seismic Data ' () Vol. 10 CREWES Research Report : 52 -1 .