View More View Less
  • 1 Hungarian Academy of Sciences H-1051 Budapest, Roosevelt tér 9, Hungary
Restricted access

In this paper, first the definitions of variability and ergodicity are discussed. This is followed by an overview of variography, and the importance of sequential stochastic simulation is emphasized. The main uncertainties of variograms are discussed, followed by the methods for decreasing this uncertainty. It is stressed that additional geologic information can be obtained from variograms, even beyond the ranges of influence. Possibilities of local evaluation of the gh values and ranges of influence are presented. The main idea of the paper is that the gh values and the ranges of influence are continuous random variables. Up to now variograms were evaluated mainly for geomathematical purposes and their direct geologic evaluation was neglected. The author presents examples of such kinds of evaluation.

  • Akin, H., H. Siemes 1988: Praktische Geostatistik. - Springer Verlag, Berlin, Heidelberg, London, New York, 304 p.

    Praktische Geostatistik. , () 304.

  • Bárdossy, A., I. Bogárdi, E. Kelly 1990: Kriging with imprecise (fuzzy) variograms. I. Theory - Mathematical Geology, 22, pp. 63-79.

    'Kriging with imprecise (fuzzy) variograms. I. Theory ' () 22 Mathematical Geology : 63 -79.

    • Search Google Scholar
  • Bárdossy, Gy., J. Fodor 2004: Evaluation of Uncertainties and Risks in Geology. - Springer Verlag. Berlin, Heidelberg, London, New York, 221 p.

    Evaluation of Uncertainties and Risks in Geology. , () 221.

  • Bárdossy, Gy., J. Fodor 2006: Application of fuzzy arithmetic and prior information to the assessment of the completeness of a mineral exploration program: A case study. - Geologic Society of America. Special Paper, 397, pp. 217-224.

    'Application of fuzzy arithmetic and prior information to the assessment of the completeness of a mineral exploration program: A case study ' () 397 Geologic Society of America. Special Paper : 217 -224.

    • Search Google Scholar
  • Carr, J.R., D.E. Myers 1985: COSIM. A Fortran IV program for Conditional Simulations. - Computer and Geosciences, 11, pp. 675-705.

    'COSIM. A Fortran IV program for Conditional Simulations ' () 11 Computer and Geosciences : 675 -705.

    • Search Google Scholar
  • Clark, I. 1979: Practical Geostatistics. - Applied Science Publishers, London, 129 p.

    Practical Geostatistics. , () 129.

  • Clark, I. 1986: The art of cross-validation in geostatistical applications. - 19th APCOM Conference. The Pennsylvanian State Univ., Chapter 20, pp. 211-220.

    , , .

  • Cressie, N., D.M. Howkins 1980: Robust estimation of the variogram. - Mathematical Geology, 12, pp. 115-125.

    'Robust estimation of the variogram ' () 12 Mathematical Geology : 115 -125.

  • Curriero, F.C., M.E. Hohn, A.M. Liebhold, S.R. Lele 2002: A statistical evaluation of non-ergodic variogram estimators. - Environmental and Ecological Statistics, 9, pp. 85-110.

    'A statistical evaluation of non-ergodic variogram estimators ' () 9 Environmental and Ecological Statistics : 85 -110.

    • Search Google Scholar
  • Deutsch, C.V., A. Journel 1998: GSLIB. Geostatistical Software Library and User's Guide. - Oxford University Press, New York, 369 p.

    A. Journel 1998: GSLIB. Geostatistical Software Library and User's Guide. , () 369.

    • Search Google Scholar
  • Deutsch, C.V., Journel, A.G. 1992: GSLIB Geostatistical Software Library. - Oxford University Press. New York, 338 p.

    GSLIB Geostatistical Software Library. , () 338.

  • Geiger, J., I. Mucsi 2005: Benefits of the sequential stochastic simulation in the mapping of the small-scale heterogeneity of the groundwater level. - Hidrológiai Közlöny, 85/2, pp. 37-47. (In Hungarian.)

    'Benefits of the sequential stochastic simulation in the mapping of the small-scale heterogeneity of the groundwater level ' () 85 Hidrológiai Közlöny : 37 -47.

    • Search Google Scholar
  • Goowaerts, P. 1997: Geostatistics for Natural Resources Estimation. - Oxford University Press, New York, 483 p.

    Geostatistics for Natural Resources Estimation. , () 483.

  • Henley, S. 2001a: Geostatistics - cracks in the foundations? - Earth Science Computer Applications, 16, pp. 1-3.

    'Geostatistics ' () 16 cracks in the foundations? - Earth Science Computer Applications : 1 -3.

    • Search Google Scholar
  • Henley, S. 2001b: The importance of being stationary. - Earth Science Computer Applications, 16, pp. 1-3.

    'The importance of being stationary ' () 16 Earth Science Computer Applications : 1 -3.

  • Isaaks, E.H., R.M. Srivastava 1988: Spatial continuity measures for probabilistic and deterministic geostatistics. - Mathematical Geology, 20, pp. 313-341.

    'Spatial continuity measures for probabilistic and deterministic geostatistics ' () 20 Mathematical Geology : 313 -341.

    • Search Google Scholar
  • Marchant, B.P., R.M. Lark 2004: Estimating variogram uncertainty. - Mathematical Geology, 36, pp. 867-898.

    'Estimating variogram uncertainty ' () 36 Mathematical Geology : 867 -898.

  • Matheron, G. 1963: Principles of geostatistics. - Economic Geology, 58, pp. 1246-1266.

    'Principles of geostatistics ' () 58 Economic Geology : 1246 -1266.

  • Matheron, G. 1971: The theory of regionalized variables and its applications. - Cah. Centre Morph. Mathématique. Fontainebleau, 211 p.

    The theory of regionalized variables and its applications. , () 211.

  • Matheron, G. 1973: The intrinsic random functions and their applications. - Applied Prob., 5, pp. 439-468.

    'The intrinsic random functions and their applications ' () 5 Applied Prob. : 439 -468.

  • Myera, D.E., C.L. Begovich, T.R. Butz, V.E. Kane 1982: Variogram models for regional groundwater geochemical data. - Mathematical Geology, 14, pp. 629-644.

    'Variogram models for regional groundwater geochemical data ' () 14 Mathematical Geology : 629 -644.

    • Search Google Scholar
  • Ortiz, J., C. Deutsch 2002: Calculation of uncertainty in the variogram. - Mathematical Geology, 34, pp. 169-183.

    'Calculation of uncertainty in the variogram ' () 34 Mathematical Geology : 169 -183.

  • Pannatier, V. 1999: VARIOWIN, software for spatial data analysis in 2D. - Springer Verlag. Berlin, Heidelberg, London, New-York, 60 p.

    VARIOWIN, software for spatial data analysis in 2D. , () 60.

  • Pham, T.D. 1997: Grade estimation using fuzzy set algorithms. - Mathematical Geology, 29, pp. 291-305.

    'Grade estimation using fuzzy set algorithms ' () 29 Mathematical Geology : 291 -305.

  • Sebestyén, Z. 2004: Uncertainty investigation of the variogram by means of the bootstrap method. - Acta Geologica Hungarica, 47/1, pp. 83-91.

    'Uncertainty investigation of the variogram by means of the bootstrap method ' () 47 Acta Geologica Hungarica : 83 -91.

    • Search Google Scholar
  • Sen, Z. 1989: Cumulative semivariogram models of regionalized variables. - Mathematical Geology, 21, pp. 891-902.

    'Cumulative semivariogram models of regionalized variables ' () 21 Mathematical Geology : 891 -902.

    • Search Google Scholar
  • Sen, Z. 1992: Standard cumulative semivariogram of stationary stochastic processes and regional correlation. - Mathematical Geology, 24, pp. 417-435.

    'Standard cumulative semivariogram of stationary stochastic processes and regional correlation ' () 24 Mathematical Geology : 417 -435.

    • Search Google Scholar
  • Sen, Z. 1998: Point cumulative semivariogram for identification of heterogeneities in regional seismicity of Turkey. - Mathematical Geology, 30, pp. 767-787.

    'Point cumulative semivariogram for identification of heterogeneities in regional seismicity of Turkey ' () 30 Mathematical Geology : 767 -787.

    • Search Google Scholar
  • Serra, J. 1968: Les structures gigognes: morphologie mathématique et interpretation métallogénique. - Mineralium Deposita, 3, pp. 135-154.

    'Les structures gigognes: morphologie mathématique et interpretation métallogénique ' () 3 Mineralium Deposita : 135 -154.

    • Search Google Scholar
  • Verly G. 2005: Grade control classification of ore and waste: A critical review of estimation and simulation based procedures. - Mathematical Geology, 37, pp. 451-475.

    'Grade control classification of ore and waste: A critical review of estimation and simulation based procedures ' () 37 Mathematical Geology : 451 -475.

    • Search Google Scholar
  • Math. Soft. Inc. 1995: S-Plus User's Manual. Version 3.3. for Windows. - Math. Soft. Seattle.

Acta Geologica Hungarica
Language English
Size  
Year of
Foundation
1952
Publication
Programme
changed title
Volumes
per Year
 
Issues
per Year
 
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5278 (Print)
ISSN 1588-2594 (Online)