View More View Less
  • 1 University of Debrecen Department of Microbiology and Biotechnology, Faculty of Sciences H-4010 Debrecen
  • | 2 University of Debrecen Department of Microbiology and Biotechnology, Faculty of Sciences H-4010 Debrecen
  • | 3 University of Debrecen Department of Microbiology and Biotechnology, Faculty of Sciences H-4010 Debrecen
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

New approaches for treatment of invasive fungal infections are necessary to cope with emerging resistant fungal pathogens of humans. In this paper, three different strategies are presented and evaluated to find new-type antifungal drugs and their targets. While experimental data obtained with potent chitinase inhibitors, e.g. allosamidin, and small-size antifungal proteins of fungal origin are encouraging more efforts are needed to verify and exploit the possible involvement of intracellular thiols, e.g. glutathione, and their metabolic anzymes in the pathogenesis of mycoses caused by dimorphic fingi. Chitinase inhibitors seem to hinder the cell separation of yeasts and the fragmentation of filamentous fungi quite effectively and, hence, they may be implicated in future therapies of systemic mycoses. In addition, small-size antifungal proteins possessing a broad inhibition spectrum may also provide us with promising new agents for the treatment of different kinds of (e.g. cutaneous) fungal infections.

  • Ghannoum, M. A., Rice, L. B.: Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12, 501 (1999).

    'Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance ' () 12 Clin Microbiol Rev : 501.

    • Search Google Scholar
  • White, T. C., Marr, K. A., Bowden, R. A.: Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11, 382 (1998).

    'Clinical, cellular, and molecular factors that contribute to antifungal drug resistance ' () 11 Clin Microbiol Rev : 382.

    • Search Google Scholar
  • Walsh, T. J., Viviani, M. A., Arathoon, E., Chiou, C., Ghannoum, M., Groll, A. H., Odds, F. C.: New targets and delivery systems for antifungal therapy. Med. Mycol. 38, 335 (2000).

    'New targets and delivery systems for antifungal therapy ' () 38 Med. Mycol : 335.

  • Majoros, L., Kardos, G., Pócsi, I., Szabó, B.: Distribution and susceptibility of Candida species isolated in the Medical University of Debrecen. Acta Microbiol. Immunol. Hung., submitted for publication

  • Nguyen, M. H., Peacock, J. E., Morris, A. J., Tanner, D. C., Nguyen, M. L., Snydman, D. R., Wagener, M. M., Rinaldi, M. G., Yu, V. L.: The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med 100, 617 (1996).

    'The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance ' () 100 Am J Med : 617.

    • Search Google Scholar
  • Gooday, G. W., Zhu, W.-Y., O'Donnell, R. W.: What are the roles of chitinases in the growing fungus? FEMS Microbiol Lett 100, 387 (1992).

    'What are the roles of chitinases in the growing fungus? ' () 100 FEMS Microbiol Lett : 387.

    • Search Google Scholar
  • Gooday, G. W.: The many uses of chitinases in nature. Chitin Chitosan Res 3, 233 (1997).

    'The many uses of chitinases in nature ' () 3 Chitin Chitosan Res : 233.

  • Dickinson, K., Keer, V., Hitchcock, C. A., Adams, D. J.: Chitinase activity from Candida albicans and its inhibition by allosamidin, J Gen Microbiol 135, 1417 (1989).

    'Chitinase activity from Candida albicans and its inhibition by allosamidin ' () 135 J Gen Microbiol : 1417.

    • Search Google Scholar
  • Horsch, M., Mayer, C., Sennhauser, U., Rast D. M.: β-N-Acetylhexosaminidase: A target for the design of antifungal agents. Pharmacol Ther 76, 187 (1997).

    'β-N-Acetylhexosaminidase: A target for the design of antifungal agents ' () 76 Pharmacol Ther : 187.

    • Search Google Scholar
  • Rast, D. M., Merz, R. A., Jeanguenat, A., Mösinger, E.: Enzymes of chitin metabolism for the design of antifungals. In: Peter, M. G., Domard, A., Muzzarelli, R. A. A. (eds): Advances in Chitin Science, Vol. 4, University of Potsdam, Potsdam. 2000. pp. 479.

    Advances in Chitin Science , () 479.

  • Cabib, E., Silverman, S. J., Shaw, J. A.: Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol 138, 97 (1992).

    'Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae ' () 138 J Gen Microbiol : 97.

    • Search Google Scholar
  • Izumida, H., Nishijima, M., Takadera, T., Nomoto, A. M., Sano, H.: The effect of chitinase inhibitors, cyclo(Arg-Pro) against cell separation of Saccharomyces cerevisiae and the morphological change of Candida albicans. J Antibiot 49, 829 (1995).

    'The effect of chitinase inhibitors, cyclo(Arg-Pro) against cell separation of Saccharomyces cerevisiae and the morphological change of Candida albicans ' () 49 J Antibiot : 829.

    • Search Google Scholar
  • Takaya, N., Yamazaki, D., Horiuchi, H., Ohta, A., Takagi, M.: Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth. Biosci Biotechnol Biochem 62, 60 (1998).

    'Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth ' () 62 Biosci Biotechnol Biochem : 60.

    • Search Google Scholar
  • Sándor, E., Pusztahelyi, T., Karaffa, L., Karányi, Z., Pócsi, I., Biró, S., Szentirmai, A., Pócsi, I.: Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungus. FEMS Microbiol Lett 164, 231 (1998).

    'Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungus ' () 164 FEMS Microbiol Lett : 231.

    • Search Google Scholar
  • Pócsi, I., Emri, T., Varecza, Z., Sámi, L., Pusztahelyi, T.: Allosamidin inhibits the fragmentation and autolysis of Penicillium chrysogenum. In: Peter, M. G., Domard, A., Muzzarelli, R. A. A. (eds): Advances in Chitin Science, Vol. 4, University of Potsdam, Potsdam. 2000. pp. 558.

    Advances in Chitin Science , () 558.

  • Sámi, L., Pusztahelyi, T., Emri, T., Varecza, Z., Fekete, A., Grallert, Aring;., Karányi, Zs., Kiss, L., Pócsi, I.: Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: chitinase production and antifungal effect of allosamidin., J Gen Appl Microbiol (in press)

  • Sakuda, S., Sakurada, M.: Preparation of biotinylated allosamidins with strong chitinase inhibitory activities. Bioorg Med Chem Lett 8, 2987 (1998).

    'Preparation of biotinylated allosamidins with strong chitinase inhibitory activities ' () 8 Bioorg Med Chem Lett : 2987.

    • Search Google Scholar
  • Deacon, J. W.: In Modern Mycology, Blackwell Science, Oxford. 1997.

    In Modern Mycology , ().

  • Orlowski, M.: Yeast/mycelium dimorphism. In: Wessels, J. G. H., Meinhardt, F. (eds): The Mycota I. Growth, Differentiation and Sexuality, Springer-Verlag, Berlin. 1994. pp. 143.

    The Mycota I. Growth, Differentiation and Sexuality , () 143.

  • Penninckx, M. J., Elskens, M. T.: Metabolism and functions of glutathione in micro-organisms. Adv Microbial Physiol 34, 239 (1993).

    'Metabolism and functions of glutathione in micro-organisms ' () 34 Adv Microbial Physiol : 239.

    • Search Google Scholar
  • Emri, T., Pócsi, I., Szentirmai, A.: Changes in the glutathione (GSH) metabolism of Penicillium chrysogenum grown on different nitrogen, sulphur and carbon sources. J Basic Microbiol 38, 3 (1998).

    'Changes in the glutathione (GSH) metabolism of Penicillium chrysogenum grown on different nitrogen, sulphur and carbon sources ' () 38 J Basic Microbiol : 3.

    • Search Google Scholar
  • Penninckx, M. J.: A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26, 737 (2000).

    'A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses ' () 26 Enzyme Microb Technol : 737.

    • Search Google Scholar
  • Thomas, D., Klein, K., Manavathu, E., Dimmock, J. R., Mutus, B.: Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans. FEMS Microbiol Lett 77, 331 (1991).

    'Glutathione levels during thermal induction of the yeast-to-mycelial transition in Candida albicans ' () 77 FEMS Microbiol Lett : 331.

    • Search Google Scholar
  • Manavathu, E., Duncan, C., Porte, Q., Gunasekaran, M.: Inhibition of yeast-to mycelium conversion of Candida albicans by conjugated styryl ketones. Mycopathologia 135, 79-83 (1996).

    'Inhibition of yeast-to mycelium conversion of Candida albicans by conjugated styryl ketones ' () 135 Mycopathologia : 79 -83.

    • Search Google Scholar
  • Manavathu, M., Gunasekaran, S., Porte, Q., Manavathu, E., Gunasekaran, M.: Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans. Can J Microbiol 42, 76 (1996).

    'Changes in glutathione metabolic enzymes during yeast-to-mycelium conversion of Candida albicans ' () 42 Can J Microbiol : 76.

    • Search Google Scholar
  • Emri, T., Pócsi, I., Szentirmai, A.: Glutathione metabolism and the protection against oxidative stress caused by peroxides in Penicillium chrysogenum. Free Rad Biol Med 23, 809 (1997).

    'Glutathione metabolism and the protection against oxidative stress caused by peroxides in Penicillium chrysogenum ' () 23 Free Rad Biol Med : 809.

    • Search Google Scholar
  • Emri, T., Pócsi, I., Szentirmai, A.: Analysis of the oxidative stress response of Penicillium chrysogenum to menadione. Free Rad Res 30, 125 (1999).

    'Analysis of the oxidative stress response of Penicillium chrysogenum to menadione ' () 30 Free Rad Res : 125.

    • Search Google Scholar
  • Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., Brown, P. O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241 (2000).

    'Genomic expression programs in the response of yeast cells to environmental changes ' () 11 Mol. Biol. Cell : 4241.

    • Search Google Scholar
  • Jürgensen, C. W., Jacobsen, N. R., Emri, T., Eriksen, S. H., Pócsi, I.: Glutathione metabolism and dimorphism in Aureobasidium pullulans. J Basic Microbiol, in press (2001).

  • Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martinez del Pozo, A., Gavilanes, J. G., Rico, M.: NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34, 3009 (1995).

    'NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism ' () 34 Biochemistry : 3009.

    • Search Google Scholar
  • Lacadena, J., Martínez del Pozo, A., Gasset, M., Patiño, B., Campos-Olivas, R., Vázquez, C., Martínez-Ruiz, A., Mancheño, J. M., Oñaderra, M., Gavilanes, J. G.: Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324, 273 (1995).

    'Characterization of the antifungal protein secreted by the mould Aspergillus giganteus ' () 324 Arch Biochem Biophys : 273.

    • Search Google Scholar
  • Nakaya, K., Omata, K., Okahashi, I., Nakamura, Y., Kolkenbrock, H., Ulbrich, N.: Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193, 31 (1990).

    'Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus ' () 193 Eur J Biochem : 31.

    • Search Google Scholar
  • Wnendt, S., Ulbrich, N., Stahl, U.: Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Curr Genet 25, 519 (1994).

    'Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus ' () 25 Curr Genet : 519.

    • Search Google Scholar
  • Schena, L., Ippolito, A., Zahavi, T., Cohen, L., Nigro, F., Droby, S.: Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17, 189 (1999).

    'Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots ' () 17 Postharvest Biol Technol : 189.

    • Search Google Scholar
  • Cooper, L. A., Gadd, G. M.: The induction of mycelial development in Aureobasidium pullulans (IMI 45533) by yeast extract. Antonie van Leeuwenhoek 50, 249 (1984).

    'The induction of mycelial development in Aureobasidium pullulans (IMI 45533) by yeast extract ' () 50 Antonie van Leeuwenhoek : 249.

    • Search Google Scholar
  • Reeslev, M., Nielsen, J. C., Olsen, J., Jensen, B., Jacobsen, T.: Effect of pH and the initial concentration of yeast extract on regulation of dimorphism and exopolysaccharide formation of Aureobasidium pullulans in batch culture. Mycol Res 95, 220 (1991).

    'Effect of pH and the initial concentration of yeast extract on regulation of dimorphism and exopolysaccharide formation of Aureobasidium pullulans in batch culture ' () 95 Mycol Res : 220.

    • Search Google Scholar
  • Leith, K. M., Hazen, K. C.: Paraquat induced thiol modulation of Histoplasma capsulatum morphogenesis. Mycopathologia 103, 21 (1988).

    'Paraquat induced thiol modulation of Histoplasma capsulatum morphogenesis ' () 103 Mycopathologia : 21.

    • Search Google Scholar
  • Maresca, B., Kobayashi, G. S.: Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53, 186 (1989).

    'Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi ' () 53 Microbiol Rev : 186.

    • Search Google Scholar
  • Thevissen, K., Terras, F. R., Broekaert, W. F.: Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65, 5451 (1999).

    'Permeabilization of fungal membranes by plant defensins inhibits fungal growth ' () 65 Appl Environ Microbiol : 5451.

    • Search Google Scholar
  • Marx, F., Haas, H., Reindl, M., Stöffler, G., Lottspeich, F., Redl, B.: Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167, 167 (1995).

    'Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity ' () 167 Gene : 167.

    • Search Google Scholar
  • Lee, D. G., Shin, S. Y., Maeng, C.-Y., Jin, Z. Z., Kim, K. L., Hahm, K.-S.: Isolation and characterisation of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263, 646 (1999).

    'Isolation and characterisation of a novel antifungal peptide from Aspergillus niger ' () 263 Biochem Biophys Res Commun : 646.

    • Search Google Scholar
  • Geisen, R.: P. nalgiovense carries a gene which is homologous to the paf gene of P. chrysogenum which codes for an antifungal peptide. Int J Food Microbiol 62, 95 (2000).

    'P. nalgiovense carries a gene which is homologous to the paf gene of P. chrysogenum which codes for an antifungal peptide ' () 62 Int J Food Microbiol : 95.

    • Search Google Scholar
  • Hu, X., Reddy, A. S.: Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol Biol 34, 949 (1997).

    'Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein ' () 34 Plant Mol Biol : 949.

    • Search Google Scholar
  • Neumann, G. M., Condron, R., Polya, G. M.: Purification and mass spectrometry-based sequencing of yellow mustard (Sinapis alba L.) 6 kDa proteins. Identification as antifungal proteins. Int J Pept Protein Res 47, 437 (1996).

    'Purification and mass spectrometry-based sequencing of yellow mustard (Sinapis alba L.) 6 kDa proteins. Identification as antifungal proteins ' () 47 Int J Pept Protein Res : 437.

    • Search Google Scholar
  • Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., Broekaert, W. F.: Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271, 15018 (1996).

    'Fungal membrane responses induced by plant defensins and thionins ' () 271 J Biol Chem : 15018.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 1 0 0
Feb 2021 1 0 0
Mar 2021 7 0 0
Apr 2021 0 0 0
May 2021 5 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0