Author:
Anna Maráz Szent István University Department of Microbiology and Biotechnology, Faculty of Food Science Somlói út 14-16 H-1118 Budapest Hungary

Search for other papers by Anna Maráz in
Current site
Google Scholar
PubMed
Close
Restricted access

Roots of classical yeast genetics go back to the early work of Lindegreen in the 1930s, who studied thallism, sporulation and inheritance of wine yeast strains belonging to S. cerevisiae. Consequent mutation and hybridization of heterothallic S. cerevisae strains resulted in the discovery of life cycle and mating type system, as well as construction of the genetic map. Elaboration of induced mutation and controlled hybridization of yeast strains opened up new possibilities for the genetic analysis of technologically important properties and for the production of improved industrial strains, but a big drawback was the widely different genetic properties of laboratory and industrial yeast strains. Genetic analysis and mapping of industrial strains were generally hindered because of homothallism, poor sporulation and/or low spore viability of brewing and wine yeast strains [1, 2]. In spite of this, there are a few examples of the application of sexual hybridization in the study of genetic control of important technological properties, e.g. sugar utilization, flocculation and flavor production in brewing yeast strains [3] or in the improvement of ethanol producing S. cerevisiae strains [4]. Rare mating and application of karyogamy deficient (kar) mutants also proved useful in strain improvement [5].Importance of yeasts in biotechnology is enormous. This includes food and beverage fermentation processes where a wide range of yeast species are playing role, but S. cerevisiae is undoubtedly the most important species among them. New biotechnology is aiming to improve these technologies, but besides this, a completely new area of yeast utilization has been emerged, especially in the pharmaceutical and medical areas. Without decreasing the importance of S. cerevisiae, numerous other yeast species, e.g. Kluyveromyces lactis, Hansenula polymorpha, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica have gained increasing potentialities in the modern fermentation biotechnology [6].Developments in yeast genetics, biochemistry, physiology and process engineering provided bases of rapid development in modern biotechnology, but elaboration of the recombinant DNA technique is far the most important milestone in this field. Other molecular genetic techniques, as molecular genotyping of yeast strains proved also very beneficial in yeast fermentation technologies, because dynamics of both the natural and inoculated yeast biota could be followed by these versatile DNA-based techniques.

  • Thornton, R.I., Eschenbruch, R.: Homothallism of wine yeasts. Antonie van Leeuwenhoek 42: 503–509 (1976).

    Eschenbruch R. , 'Homothallism of wine yeasts ' (1976 ) 42 Antonie van Leeuwenhoek : 503 -509 .

    • Search Google Scholar
  • Stewart, G.G.: The genetic manipulation of industrial yeast strains. Can J Microbiol 27: 973–990 (1981).

    Stewart G.G. , 'The genetic manipulation of industrial yeast strains ' (1981 ) 27 Can J Microbiol : 973 -990 .

    • Search Google Scholar
  • Bilinski, C.A., Hatfield, D.E., Sobczak, J.A., Russell, I., Stewart, G.G.: Analysis of sporulation and segregation of polyploid brewing strain of Saccharomyces cerevisiae. In: Biological Research on Industrial Yeasts. Vol. II (eds G.G. Stewart et al.), CRC Press, Boca Raton 1987, pp. 37–47.

    Stewart G.G. , '', in Biological Research on Industrial Yeasts. Vol. II , (1987 ) -.

  • Christensen, B.E.: Cross breeding of distillers’ yeast by hybridization of spore derived clones. Carlsberg Res Commun 52: 253–262 (1987)

    Christensen B.E. , 'Cross breeding of distillers’ yeast by hybridization of spore derived clones ' (1987 ) 52 Carlsberg Res Commun : 253 -262 .

    • Search Google Scholar
  • Kielland-Brandt, M.C., Nillson-Tillgren, T., Peresen, J.G.L., Holmberg, S., Gjermansen, C.: Approaches to the genetic analysis and breeding of brewer's yeast. In: Yeast genetics. Fundamental and applied aspects (eds J.F.T. Spencer, D.M. Spencer and A.R.W. Smith) Springer-Verlag New York, 1983, pp 421–437.

    Gjermansen C. , '', in Yeast genetics. Fundamental and applied aspects , (1983 ) -.

  • Walker, G.M.: Yeast physiology and biotechnology. John Wiley & Sons, Ltd, Chichester 1998.

    Walker G.M. , '', in Yeast physiology and biotechnology , (1998 ) -.

  • Flegel, T.W.: The pheromonal control of mating in yeasts and its phylogenetic implication: a review. Can J Microbiol 27: 373–389 (1981).

    Flegel T.W. , 'The pheromonal control of mating in yeasts and its phylogenetic implication: a review ' (1981 ) 27 Can J Microbiol : 373 -389 .

    • Search Google Scholar
  • Herskowitz, I., Rine, J., Strathern, J.: Mating type determination and mating type interconversion in Saccharomyces cerevisiae. In: The molecular and cellular biology of the yeast Saccharomyces. Vol. 2. Gene expression (eds. E.W. Jones, J.R. Pringle, J.R. Broach) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA 1992.

    Strathern J. , '', in The molecular and cellular biology of the yeast Saccharomyces. Vol. 2. Gene expression , (1992 ) -.

  • Ferenczy, L., Maráz, A.: Transfer of mitochondria by protoplast fusion in Saccharomyces cerevisiae. Nature 268: 24–525 (1977).

    Maráz A. , 'Transfer of mitochondria by protoplast fusion in Saccharomyces cerevisiae ' (1977 ) 268 Nature : 24 -525 .

    • Search Google Scholar
  • Maráz, A., Kiss, M., Ferenczy, L.: Protoplast fusion in Saccharomyces cerevisiae strains of identical and opposite mating types. FEMS Microbiol Letters 3: 319–322 (1978).

    Ferenczy L. , 'Protoplast fusion in Saccharomyces cerevisiae strains of identical and opposite mating types ' (1978 ) 3 FEMS Microbiol Letters : 319 -322 .

    • Search Google Scholar
  • Maráz, A., Šubik, J.: Transmission and recombination of mitochondrial genes in Saccharomyces cerevisae after protoplast fusion. Mol Gen Genet 181: 131–13619 (1981).

    Šubik J. , 'Transmission and recombination of mitochondrial genes in Saccharomyces cerevisae after protoplast fusion ' (1981 ) 181 Mol Gen Genet : 131 -13619 .

    • Search Google Scholar
  • Maráz, A., Deák, T: Production and analysis of improved enological yeast strains. Biotech Forum Europe 7: 63–66 (1990).

    Deák T. , 'Production and analysis of improved enological yeast strains ' (1990 ) 7 Biotech Forum Europe : 63 -66 .

    • Search Google Scholar
  • Maráz, A., Zákány, F., Lovenyák, M.: Improvement of brewing yeasts: Construction of killer and glucoamylase producing strains. Hungarian Agricultural Research 3: 34–41 (1994).

    Lovenyák M. , 'Improvement of brewing yeasts: Construction of killer and glucoamylase producing strains ' (1994 ) 3 Hungarian Agricultural Research : 34 -41 .

    • Search Google Scholar
  • Erratt, J.A., Stewart, G.G.: Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brewing Chem 36: 151–161 (1978).

    Stewart G.G. , 'Genetic and biochemical studies on yeast strains able to utilize dextrins ' (1978 ) 36 J Am Soc Brewing Chem : 151 -161 .

    • Search Google Scholar
  • Tamaki, H.: Genetic studies of ability to ferment starch in Saccharomyces: gene polymorphism. Mol Gen Genet 164: 205–209 (1978).

    Tamaki H. , 'Genetic studies of ability to ferment starch in Saccharomyces: gene polymorphism ' (1978 ) 164 Mol Gen Genet : 205 -209 .

    • Search Google Scholar
  • Yamashita, I., Fukui, S.: Transcriptional control of the glucoamylase gene in the yeast Saccharomyces cerevisiae. Mol Cell Biol 5: 3069–3073 (1985).

    Fukui S. , 'Transcriptional control of the glucoamylase gene in the yeast Saccharomyces cerevisiae ' (1985 ) 5 Mol Cell Biol : 3069 -3073 .

    • Search Google Scholar
  • Pretorius, I.S., Marmur, I.: Localization of yeast glucoamylase genes by PFGE and OFAGE. Curr Genet 7: 109–112 (1988).

    Marmur I. , 'Localization of yeast glucoamylase genes by PFGE and OFAGE ' (1988 ) 7 Curr Genet : 109 -112 .

    • Search Google Scholar
  • Balogh, I., Maráz, A. Segregation of yeast polymorphic STA genes in meiotic recombinants and analysis of glucoamylase production. Can J Microbiol 42: 1190–1196 (1996).

    Maráz A. , 'Segregation of yeast polymorphic STA genes in meiotic recombinants and analysis of glucoamylase production ' (1996 ) 42 Can J Microbiol : 1190 -1196 .

    • Search Google Scholar
  • Balogh, I., Maráz, A.: Presence of STA gene sequences in brewer's yeast genome. Letters in Appl Microbiol 22: 400–404 (1996).

    Maráz A. , 'Presence of STA gene sequences in brewer's yeast genome ' (1996 ) 22 Letters in Appl Microbiol : 400 -404 .

    • Search Google Scholar
  • Stumm, C., Hermans, I.M.H, Middelbeek, B.I., Croes, A.F., de Vries, G.I.M.: Killer sensitive relationships in yeasts from natural habitats. Antonie van Leeuvenhoek 43: 125–128 (1977).

    Vries G.I.M. , 'Killer sensitive relationships in yeasts from natural habitats ' (1977 ) 43 Antonie van Leeuvenhoek : 125 -128 .

    • Search Google Scholar
  • Shimizu, K.: Killer yeasts. In: Wine microbiology and biotechnology (ed. G.H. Fleet) Harwood Academic Publ GmbH, Chur, Switzerland 1993, pp. 243–264.

    Shimizu K. , '', in Wine microbiology and biotechnology , (1993 ) -.

  • Osotshilp, C., Subden, R.C.: Malate transport in Schizosaccharomyces pombe. J Bacteriol 168: 1439–1443 (1986).

    Subden R.C. , 'Malate transport in Schizosaccharomyces pombe ' (1986 ) 168 J Bacteriol : 1439 -1443 .

    • Search Google Scholar
  • Tamai, Y., Momma, T., Yoshimoto, H., Kaneko, Y.: Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14: 923–933 (1998).

    Kaneko Y. , 'Co-existence of two types of chromosome in the bottom fermenting yeast, Saccharomyces pastorianus ' (1998 ) 14 Yeast : 923 -933 .

    • Search Google Scholar
  • Vaughan-Martini, A., Kurtzman, C.P.: Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int J Syst Bacteriol 35: 508–511 (1985).

    Kurtzman C.P. , 'Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto ' (1985 ) 35 Int J Syst Bacteriol : 508 -511 .

    • Search Google Scholar
  • Collapse
  • Expand

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • CABELLS Journalytics
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded

2023  
Web of Science  
Journal Impact Factor 1.3
Rank by Impact Factor Q4 (Immunology)
Journal Citation Indicator 0.31
Scopus  
CiteScore 2.3
CiteScore rank Q3 (Infectious Diseases)
SNIP 0.389
Scimago  
SJR index 0.308
SJR Q rank Q3

Acta Microbiologica et Immunologica Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article (only for OA publications)
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 772 EUR / 848 USD
Print + online subscription: 860 EUR / 944 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2024 63 3 3
Nov 2024 43 2 1
Dec 2024 46 0 0
Jan 2025 54 0 0
Feb 2025 51 0 0
Mar 2025 30 0 0
Apr 2025 0 0 0