With the possible exception of very simple viruses, most viruses appear to encode at least one virus specific endopeptidase. In addition to facilitating the orchestrated fragmentation of polyproteins of RNA viruses, these proteolytic enzymes may also be involved in the suppression of host protein synthesis, the regulation of virus assembly, the egress and subsequent uncoating in another cycle of infection of both RNA and DNA viruses. The endopeptidase encoded by adenoviruses (AVP or adenain) appears to be involved in several of these functions. Most of the literature concerns the protease of human adenovirus type 2, but there are good reasons to believe that the proteases of other adenovirus serotypes will be very similar. For a review see Weber [1, 2].
Ruzindana-Umunyana, A., Sircar, S., Schick, C., Silverman, G. A., Weber, J. M. Adenovirus endopeptidase hydrolyses human squamous cell carcinoma antigens in vitro but not ex vivo. Virology 268: 141-146 (2000).
'Adenovirus endopeptidase hydrolyses human squamous cell carcinoma antigens in vitro but not ex vivo. ' () 268 Virology : 141 -146.
Baniecki, M. L., McGrath, W. J., McWhirter, S. M., Li, C., Toledo, D. L., Pellicena, P., Barnard, D. L., Thorn, K. S., Manger, W. F. Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc. Biochem. 40: 12349-12356 (2001).
'Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc. ' () 40 Biochem. : 12349 -12356.
Ruzindana-Umunyana, A., Weber, J. M. Interactions of human lacrimal and salivary cystatins with adenovirus endopeptidase. Antiviral Res. 51: 203-214 (2001).
'Interactions of human lacrimal and salivary cystatins with adenovirus endopeptidase. ' () 51 Antiviral Res. : 203 -214.
Weber, J. M., Ruzindana-Umunyana, A., Imbeault, L., Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res. In press. (2003).
Cornish, J. A., Murray, H., Kemp, G. D. et al. Specific inhibitors of the adenovirus type 2 proteinase based on substrate-like tetrapeptide nitriles. Bioorganic & Medicinal Chem. Lett. 5: 25-30 (1995).
'Specific inhibitors of the adenovirus type 2 proteinase based on substrate-like tetrapeptide nitriles. ' () 5 Bioorganic & Medicinal Chem. Lett. : 25 -30.
Weber, J. M. The adenovirus endopeptidase and its role in virus infection. In "Molecular Repertoire of Adenoviruses" Vol. 199/I, Curr. Top. Micro. Imm. (W. Doerfler and P. Bohm, Eds), pp. 227-235, Springer-Verlag, Berlin (1995).
Molecular Repertoire of Adenoviruses" Vol. 199/I, Curr. Top. Micro. Imm. , () 227 -235.
Weber, J. M. Role of endopeptidase in adenovirus infection. In "Adenoviruses: From Basic Research to Gene Therapy Application" (P. Seth, Ed.), Humana Press, Clifton, NJ (1999).
"Adenoviruses: From Basic Research to Gene Therapy Application" , ().
Webster, A., Leith, I. R., Hay, R. T. Activation of adenovirus-coded protease and processing of preterminal protein. J. Virol. 68:7292-7300 (1994).
'Activation of adenovirus-coded protease and processing of preterminal protein. ' () 68 J. Virol. : 7292 -7300.
Ding, J., McGrath, W. J., Sweet, R. M., Mangel, W. F. Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J. 15: 1778-1783 (1996).
'Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. ' () 15 EMBO J. : 1778 -1783.
Mangel, W. F., McGrath, W. J., Toledo, D. L. et al. Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274-275 (1993).
'Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. ' () 361 Nature : 274 -275.
Webster, A., Hay, R. T., Kemp, G. The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72: 97-104 (1993).
'The adenovirus protease is activated by a virus-coded disulphide-linked peptide. ' () 72 Cell : 97 -104.
Butkiewicz, N. J. et al. Enhancement of hepatitis C virus NS3 proteinase activity by association with NS4A-specific synthetic peptides: identification of sequence and critical residues of NS4A for the cofactor activity. Virology 225: 328-338 (1996).
'Enhancement of hepatitis C virus NS3 proteinase activity by association with NS4A-specific synthetic peptides: identification of sequence and critical residues of NS4A for the cofactor activity. ' () 225 Virology : 328 -338.
Rancourt, C., Keyvani-Amineh, H., Diouri, M., Weber, J. M. Mutagenesis of conserved residues of the adenovirus protease. Virology 224:561-563 (1996).
'Mutagenesis of conserved residues of the adenovirus protease. ' () 224 Virology : 561 -563.
Grierson, A. W., Nicholson, R., Talbot, P. et al. The protease of adenovirus serotype 2 requires cysteine residues for both activation and catalysis. J. Gen. Virol. 75: 2761-2764 (1994).
'The protease of adenovirus serotype 2 requires cysteine residues for both activation and catalysis. ' () 75 J. Gen. Virol. : 2761 -2764.
Diouri, M., Keyvani-Amineh, H., Geoghegan, K. F., Weber, J. M. Cleavage efficiency by adenovirus protease is site-dependent. J. Biol. Chem. 271: 32511-32514 (1996).
'Cleavage efficiency by adenovirus protease is site-dependent. ' () 271 J. Biol. Chem. : 32511 -32514.
Webster, A., Leith, I. R., Nicholson, J., Hounsell, J., Hay, R. T. Role of preterminal protein processing in adenovirus replication. J. Virol. 71: 6381-6389 (1997).
'Role of preterminal protein processing in adenovirus replication. ' () 71 J. Virol. : 6381 -6389.
Mangel, W. F., Toledo, D. L., Jianzhong, D. et al. Temporal and spatial control of the adenovirus proteinase by both a peptide and the viral DNA. TIBS 22(10): 393-398 (1997).
'Temporal and spatial control of the adenovirus proteinase by both a peptide and the viral DNA. ' () 22 TIBS : 393 -398.
Chen, P. H., Ornelles, D. A., Shenk, T. The adenovirus L3 23-kilodalton protease cleaves the aminoterminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. J. Virol. 67: 3507-3514 (1993).
'The adenovirus L3 23-kilodalton protease cleaves the aminoterminal head domain from cytokeratin 18 and disrupts the cytokeratin network of HeLa cells. ' () 67 J. Virol. : 3507 -3514.
Cotten, M., Weber, J. M. The adenovirus protease is required for virus entry into host cells. Virology 213: 494-502 (1995).
'The adenovirus protease is required for virus entry into host cells. ' () 213 Virology : 494 -502.
Greber, U. F., Webster, P., Weber, J. M., Helenius, A. The role of the adenovirus protease in virus entry into cells. EMBO J. 15: 1766-1777 (1996).
'The role of the adenovirus protease in virus entry into cells. ' () 15 EMBO J. : 1766 -1777.
Li, S., Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398:246-251 (1999).
'A new protease required for cell-cycle progression in yeast. ' () 398 Nature : 246 -251.
Strunnikov, A. V., Aravind, L., Koonin, E. V. Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. Genetics 158: 95-107 (2001).
'Saccharomyces cerevisiae SMT4 encodes an evolutionarily conserved protease with a role in chromosome condensation regulation. ' () 158 Genetics : 95 -107.
Balakirev, M. Y., Jaquinod, M., Haas, A. L., Chroboczek, J. Deubiquitinating function of adenovirus proteinase. J. Virol. 76: 6323-6331 (2002).
'Deubiquitinating function of adenovirus proteinase. ' () 76 J. Virol. : 6323 -6331.
Sircar, S., Ruzindana-Umunyana, A., Neugehauer, V., Weber, J. M. Adenovirus endopeptidase and papain are inhibited by the same agents. Antiviral Res. 40: 45-51 (1998).
'Adenovirus endopeptidase and papain are inhibited by the same agents. ' () 40 Antiviral Res. : 45 -51.
Pang, Y. P., Xu, K., Kollmeyer, T. M., Perola, E., McGrath, W. J., Green, D. T., Mangel, W. F., Discovery of a new inhibitor lead of adenovirus proteinase: steps toward selective, irreversible inhibitors of cysteine proteinases. FEBS Letters 502: 93-97 (2001).
'Discovery of a new inhibitor lead of adenovirus proteinase: steps toward selective, irreversible inhibitors of cysteine proteinases. ' () 502 FEBS Letters : 93 -97.
Lopez-Otin, C., Simon-Mateo, C., Martinez, L., Vinuela, E. Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. J. Biol. Chem. 264: 9107-9110 (1989).
'Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. ' () 264 J. Biol. Chem. : 9107 -9110.
Lee, P., Hruby, D. E. Proteolytic cleavage of vaccinia virus virion proteins. Mutational analysis of specificity determinants. J. Biol. Chem. 269:8616-8622 (1994).
'Proteolytic cleavage of vaccinia virus virion proteins. Mutational analysis of specificity determinants. ' () 269 J. Biol. Chem. : 8616 -8622.
Barrett, A. J., Rawlings, N. D. (2001) Evolutionary lines of cysteine peptidases. Biol. Chem. 382:727-733.
'Evolutionary lines of cysteine peptidases. ' () 382 Biol. Chem. : 727 -733.