View More View Less
  • 1 Institute of Medical Microbiology, Semmelweis University Institute of Medical Microbiology, Faculty of General Medicine Nagyvárad tér 4, H-1089 Budapest, Hungary Budapest
  • | 2 Institute of Medical Microbiology, Semmelweis University Institute of Medical Microbiology, Faculty of General Medicine Nagyvárad tér 4, H-1089 Budapest, Hungary H-1089 Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Each of the more than 1500 polypeptide molecules of 7 different types building up the adenovirus capsid - probably even those of their amino-acids - are in symmetrical location. Every kind of polypeptide forms a separately also symmetrical network in the capsid distributed according to their functions in the inner and outer side and the inside of the facets and edges, but always in compliance with the icosahedral symmetry. Therefore, each different polypeptide also means a general symmetry motif in the capsid in its own symmetry network. Hexons can be considered as general symmetry motifs in some special association that is because of their environmental position four kinds of hexon types can be found, which are on every facet, next to one another, like three identical groups of four (GOF) according to the three-fold rotational symmetry. Two polypeptides of a peripentonal hexon of each GOF orient toward the penton and the third toward the other penton located further on the same edge. There are two versions of the arrangement of the GOFs: the hexons surround either a polypeptide IX or a polypeptide IIIa. The two versions of GOFs on 20 facets symmetrically recurring 60 times as general hexon symmetry motifs form the capsid in combination with the network of other polypeptides. Ideally, the surface of the hexon trimer shows three-fold rotational and three-fold reflexional symmetries. In the arrangement of hexons in the facets the translational, rotational, horizontal and vertical reflexional symmetry and the combination of these, as well as the glide reflexion and the antisymmetry can be found. Each hexon has six nearest neighbours and every hexon takes part in the construction of three hexon rows. Every facet and every vertex made up of five facets has an antisymmetrical pair located on the opposite side of the capsid. Every triangular facet participates in forming three vertices and every facet has three nearest neighbouring facets. In the facets, the polypeptide subunits of polypeptide IX centered GOF hexons have identical counter-clockwise orientation but the orientation of the neighbouring facets is always opposite compared to each other. On the five-fold symmetry axis, any facet can be “turned on” to the adjacent facet or “rotated” to all the others and will take the symmetry and orientation of the facet it got turned on or rotated to. Thus, every facet together with the polypeptides attached to it shows a twenty-fold symmetry and multiplicity. An other type of symmetry and multiplicity in the capsid is that perpendicular to the 6 five-fold rotation axes run a geodetic (equatorial) ribbon like motif (superfieces) altogether six made up of 10×10 triangular facets and bent ten-times with an angle of 36°. A triangular facet participates in forming three ribbon-like motifs, which intersect with each other on the given facet, but the same three motifs intersect repeatedly only on the antisymmetrically located facet.

  • Darvas Gy.: Szimmetria a tudományban és a művészetben. (In Hungarian.) Magyar Tudomány3, 257-265 (1999).

    'Szimmetria a tudományban és a művészetben. (In Hungarian.) ' () 3 Magyar Tudomány : 257 -265.

    • Search Google Scholar
  • Hargittai I., Hargittai M.: Szimmetriák a felfedezésben. (In Hungarian.) Vincze Kiadó Kft, Budapest, 2003.

    Szimmetriák a felfedezésben. (In Hungarian.) , ().

  • Hargittai, I., Hargittai, M.: Symmetry. A Unifying Concept. Shelter Publ. Inc., Bolinas, California, 1994.

    Symmetry. A Unifying Concept , ().

  • Weyl, H.: Szimmetria. (In Hungarian.) Gondolat Kiadó, Budapest, 1982.

    Szimmetria. (In Hungarian.) , ().

  • Benkő, M., Harrach, B., Russel, W. C. Adenoviridae. In: Van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R., Wickner, R. B. (eds.), Virus Taxonomy: Classification and Nomenclature of Viruses. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, 2000, pp. 227-238.

    'Virus Taxonomy: Classification and Nomenclature of Viruses ' , , .

  • Burnett, R. M., Grütter, M. G., White, J. L.: The structure of the adenovirus capsid. I. An envelope model of hexon at 6 Å resolution. J Mol Biol185, 105-123 (1985).

    'The structure of the adenovirus capsid. I. An envelope model of hexon at 6 Å resolution ' () 185 J Mol Biol : 105 -123.

    • Search Google Scholar
  • Burnett, R. M.: The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture. J Mol Biol185, 125-143 (1985).

    'The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture ' () 185 J Mol Biol : 125 -143.

    • Search Google Scholar
  • Vámosi Gy., Bodnár A., Győrffi M., Bene L., Damjanovich S.: Nanotechnológia a biológiában. (In Hungarian.) Magyar Tudomány9, 1166-1173 (2003).

    'Nanotechnológia a biológiában. (In Hungarian.) ' () 9 Magyar Tudomány : 1166 -1173.

  • Stewart, P. L., Burnett, R. M., Cyrkaff, M., Fuller, S. D.: Image reconstruction reveals the complex molecular organization of adenovirus. Cell67, 145-154 (1991).

    'Image reconstruction reveals the complex molecular organization of adenovirus ' () 67 Cell : 145 -154.

    • Search Google Scholar
  • Nermut, M. V., Perkins, W. J.: Consideration of the three dimensional structure of the adenovirus hexon from electron microscopy and computer modelling. Micron10, 247-266 (1979).

    'Consideration of the three dimensional structure of the adenovirus hexon from electron microscopy and computer modelling ' () 10 Micron : 247 -266.

    • Search Google Scholar
  • Rux, J. J., Burnett, R. M.: Type-specific epitope locations revealed by X-ray crystallo-graphic study of adenovirus type 5 hexon. Mol Ther1, 18-30 (2000).

    'Type-specific epitope locations revealed by X-ray crystallo-graphic study of adenovirus type 5 hexon ' () 1 Mol Ther : 18 -30.

    • Search Google Scholar
  • San Martin, C., Burnett, R. M.: Structural studies on adenoviruses. In: Doerfler, W., Böhm, P. (eds.), Adenoviruses: Model and Vectors in Virus-host Interactions. Springer Verlag, 2003.

    Structural studies on adenoviruses , ().

  • Athappilly, F. K., Murali, R., Rux, J. J., Cai, Z., Burnett, R. M.: The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 Å resolution. J Mol Biol242, 430-455 (1994).

    'The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 Å resolution ' () 242 J Mol Biol : 430 -455.

    • Search Google Scholar
  • Burnett, R. M.: The structure of adenovirus. In: Chiu W., Burnett, R. M., Garcea R. L. (eds.), Structural Biology of Viruses. Oxford University Press, New York, 1997, pp. 209-238.

    The structure of adenovirus , () 209 -238.

  • Laver, W. G., Younghusband, H. B., Wrigley, N. G.: Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology45, 598-614 (1971).

    'Purification and properties of chick embryo lethal orphan virus (an avian adenovirus) ' () 45 Virology : 598 -614.

    • Search Google Scholar
  • Ádám, É., Nász, I.: Mutual spatial orientation of hexons in the adenovirus capsid by electron microscopy and modelling. Acta Microbiol Hung32, 399-412 (1985).

    'Mutual spatial orientation of hexons in the adenovirus capsid by electron microscopy and modelling ' () 32 Acta Microbiol Hung : 399 -412.

    • Search Google Scholar
  • Pereira, H. G., Wrigley, N. G.: In vitro reconstruction, hexon bonding and handedness of incomplete adenovirus capsid. J Mol Biol85, 617-631 (1974).

    'In vitro reconstruction, hexon bonding and handedness of incomplete adenovirus capsid ' () 85 J Mol Biol : 617 -631.

    • Search Google Scholar
  • Dmitriev, I. P., Kashentseva, E. A., Curiel, D. T.: Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol76, 6893-6899 (2002).

    'Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX ' () 76 J Virol : 6893 -6899.

    • Search Google Scholar
  • Rosa-Calatrava, M., Grave, L., Puvion-Dutilleul, F., Chatton, B., Kedinger, C.: Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol75, 7131-7141 (2001).

    'Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization ' () 75 J Virol : 7131 -7141.

    • Search Google Scholar
  • Ádám, É., Nász, I.: Mutual orientation of peripentonal hexons and polypeptide subunits in the adenovirus capsid. Arch Virol, 79, 299-305 (1984).

    'Mutual orientation of peripentonal hexons and polypeptide subunits in the adenovirus capsid ' () 79 Arch Virol : 299 -305.

    • Search Google Scholar
  • Xia, C., Henry, L. J., Gerard, R. D., Deisenhofer, J.: Crystal structure of receptor-binding domain of adenovirus type 5 fiber protein at 1.7 Å resolution. Structure2, 1259-1270 (1994).

    'Crystal structure of receptor-binding domain of adenovirus type 5 fiber protein at 1.7 Å resolution ' () 2 Structure : 1259 -1270.

    • Search Google Scholar
  • Chiu, C. Y., Wu, E., Brown, S. L., von Seggern, D. J., Nemerow, G. R., Stewart, P. L.: Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol75, 5375-5380 (2001).

    'Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions ' () 75 J Virol : 5375 -5380.

    • Search Google Scholar
  • van Oostrum, J., Smith, P. R., Mohraz, M., Burnett, R. M.: Interpretation of electron micrographs of adenovirus hexon arrays using a crystallographic molecular model. J Ultrastruc Res96, 77-90 (1986).

    'Interpretation of electron micrographs of adenovirus hexon arrays using a crystallographic molecular model ' () 96 J Ultrastruc Res : 77 -90.

    • Search Google Scholar
  • van Oostrum, J., Smith, P. R., Mohraz, M., Burnett, R. M.: The structure of the adenovirus capsid. III. Hexon packing determined from electron micrographs of capsid fragments. J Mol Biol198, 73-89 (1987).

    'The structure of the adenovirus capsid. III. Hexon packing determined from electron micrographs of capsid fragments ' () 198 J Mol Biol : 73 -89.

    • Search Google Scholar
  • Roberts, M. M., White, J. L., Grütter, M. G., Burnett, R. M.: Three-dimensional structure of the adenovirus major coat protein hexon. Science232, 1148-1151 (1986).

    'Three-dimensional structure of the adenovirus major coat protein hexon ' () 232 Science : 1148 -1151.

    • Search Google Scholar
  • van Oostrum, J., Burnett, R. M.: Molecular composition of the adenovirus type 2 virion. J Virol56, 439-448 (1985).

    'Molecular composition of the adenovirus type 2 virion ' () 56 J Virol : 439 -448.

  • Ruigrok, R. W. H., Barge, A., Albiges-Rizo, C., Dayan, S.: Structure of adenovirus fibre. II. Morphology of single fibres. J Mol Biol213, 589-596 (1990).

    'Structure of adenovirus fibre. II. Morphology of single fibres ' () 213 J Mol Biol : 589 -596.

    • Search Google Scholar
  • Favier, A-L., Schoehn, G., Jaquinod, M., Harsi, C., Chroboczek, J.: Structural studies of human enteric adenovirus type 41. Virology293, 75-85 (2002).

    'Structural studies of human enteric adenovirus type 41 ' () 293 Virology : 75 -85.

  • Kidd, A. H., Chroboczek, J., Cusack, S., Ruigrok, R. W. H.: Adenovirus type 40 virions contain 2 distinct fibers. Virology192, 73-84 (1993).

    'Adenovirus type 40 virions contain 2 distinct fibers ' () 192 Virology : 73 -84.

  • Seki, T., Dmitriev, I., Kashentseva, E., Takayama, K., Rots, M., Suzuki, K., Curiel, D. T.: Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol76, 1100-1108 (2002).

    'Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines ' () 76 J Virol : 1100 -1108.

    • Search Google Scholar
  • Wu, E., Ferdandez, J., Fleck, S. K., von Seggern, D. J., Huang, S., Nemerow, G. R.: A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37. Virology279, 78-89 (2001).

    'A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37 ' () 279 Virology : 78 -89.

    • Search Google Scholar
  • Hess, M., Cuzange, A., Ruigrok, R. W. H., Chroboczek, J., Jacrot, B.: The avian adenovirus penton: two fibres and one base. J Mol Biol252, 379-385 (1995).

    'The avian adenovirus penton: two fibres and one base ' () 252 J Mol Biol : 379 -385.

  • Nász, I., Ádám, É.: Arrangement of hexons and polypeptide subunits in the adenovirus capsid. Acta Microbiol Hung30, 169-178 (1983).

    'Arrangement of hexons and polypeptide subunits in the adenovirus capsid ' () 30 Acta Microbiol Hung : 169 -178.

    • Search Google Scholar
  • Stewart, P. L., Fuller, S. D., Burnett, R. M.: Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. The EMBO J12, 2589-2599 (1993).

    'Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy ' () 12 The EMBO J : 2589 -2599.

    • Search Google Scholar
  • Matthews, D. A., Russel, W. C.: Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease. J Gen Virol76, 1959-1969 (1995).

    'Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease ' () 76 J Gen Virol : 1959 -1969.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 2 0 0
Jul 2021 2 0 0
Aug 2021 5 0 0
Sep 2021 0 0 0
Oct 2021 1 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0