View More View Less
  • 1 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged Somogyi Béla tér 1, H-6725 Szeged, Hungary
  • 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged Somogyi Béla tér 1, H-6725 Szeged, Hungary
  • 3 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged Somogyi Béla tér 1, H-6725 Szeged, Hungary
  • 4 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged Somogyi Béla tér 1, H-6725 Szeged, Hungary
  • 5 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged Somogyi Béla tér 1, H-6725 Szeged, Hungary
  • 6 Department of Dentistry and Oral Surgery, Faculty of Medicine, University of Szeged Somogyi Béla tér 1, H-6725 Szeged, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Anaerobic infections are common and can cause diseases associated with severe morbidity, but are easily overlooked in clinical settings. Both the relatively small number of infections due to exogenous anaerobes and the much larger number of infections involving anaerobic species that are originally members of the normal flora, may lead to a life-threatening situation unless appropriate treatment is instituted. Special laboratory procedures are needed for the isolation, identification and susceptibility testing of this diverse group of bacteria. Since many anaerobes grow more slowly than the facultative or aerobic bacteria, and particularly since clinical specimens yielding anaerobic bacteria commonly contain several organisms and often very complex mixtures of aerobic and anaerobic bacteria, considerable time may elapse before the laboratory is able to provide a final report. Species definition based on phenotypic features is often time-consuming and is not always easy to carry out. Molecular genetic methods may help in the everyday clinical microbiological practice in laboratories dealing with the diagnostics of anaerobic infections. Methods have been introduced for species diagnostics, such as 16S rRNA PCR-RFLP profile determination, which can help to distinguish species of Bacteroides, Prevotella, Actinomyces, etc. that are otherwise difficult to differentiate. The use of DNA-DNA hybridization and the sequencing of special regions of the 16S rRNA have revealed fundamental taxonomic changes among anaerobic bacteria. Some anaerobic bacteria are extremely slow growing or not cultivatable at all. To detect them in special infections involving flora changes due to oral malignancy or periodontitis, for instance, a PCR-based hybridization technique is used. Molecular methods have demonstrated the spread of specific resistance genes among the most important anaerobic bacteria, the members of the Bacteroides genus. Their detection and investigation of the IS elements involved in their expression may facilitate following of the spread of antibiotic resistance among anaerobic bacteria involved in infections and in the normal flora members. Molecular methods (a search for toxin genes and ribotyping) may promote a better understanding of the pathogenic features of some anaerobic infections, such as the nosocomial diarrhoea caused by C. difficile and its spread in the hospital environment and the community. The investigation of toxin production at a molecular level helps in the detection of new toxin types. This mini-review surveys some of the results obtained by our group and others using molecular genetic methods in anaerobic diagnostics.

  • Jousimies-Somer, H.: Recently described clinically important anaerobic bacteria: taxonomic aspects and update. Clin Infect Dis 25, S78-S87 (1997).

    'Recently described clinically important anaerobic bacteria: taxonomic aspects and update ' () 25 Clin Infect Dis : S78 -S87.

    • Search Google Scholar
  • Jousimies-Somer, H., Summanen, P. H., Finegold, S. M.: Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and other anaerobic Gram-negative rods and cocci. In: Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., Yolken, R. H. (eds): Manual of Clinical Microbiology, 7th edition, ASM Press, Washington, 1999, pp. 690-711.

    Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and other anaerobic Gram-negative rods and cocci , () 690 -711.

    • Search Google Scholar
  • Nagy, N. K., Sonkodi, I., Szöke, I., Nagy, E., Newman, H. N.: The microflora associated with human oral carcinomas. European Journal of Cancer. Oral Oncology 34, 304-308 (1998).

    'The microflora associated with human oral carcinomas. European Journal of Cancer ' () 34 Oral Oncology : 304 -308.

    • Search Google Scholar
  • Slots, J.: Update on general health risk of periodontal disease. Int Dent J 53 (Suppl 3), 200-207 (2003).

    'Update on general health risk of periodontal disease ' () 53 Int Dent J : 200 -207.

  • Socransky, S. S., Haffajee, A. D.: Dental biofilms: difficult therapeutic targets. Periodontol 28, 12-55 (2002).

    'Dental biofilms: difficult therapeutic targets ' () 28 Periodontol : 12 -55.

  • Conrads, G.: DNA probes and primers in dental practice. Clin Infect Dis 35, S72-S77 (2002).

    'DNA probes and primers in dental practice ' () 35 Clin Infect Dis : S72 -S77.

  • www.hain-lifescience.de

  • Vaneechoutte, M., Cartwright, C. P., Williams, E. C., Jager, B., Tichy, H. V., De Baere, T., De Rouke, A., Verschraegen, G.: Evaluation of 16S rRNA gene restriction analysis for the identification of cultured organisms of clinically important Clostridium species. Anaerobe 2, 249-256 (1996).

    'Evaluation of 16S rRNA gene restriction analysis for the identification of cultured organisms of clinically important Clostridium species ' () 2 Anaerobe : 249 -256.

    • Search Google Scholar
  • Stubbs, S. L. J., Brazier, J. S., Talbot, P. R., Duerden, B. I.: PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes. J Clin Microbiol 38, 3209-3213 (2000).

    'PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes ' () 38 J Clin Microbiol : 3209 -3213.

    • Search Google Scholar
  • Hall, V., O'Neill, G. L., Magee, J. T., Duerden B. I.: Development of amplified 16S ribosomal DNA restriction analysis for identification of Actinomyces species and comparison with pyrolysis-mass spectromentry and conventional biochemical tests. J Clin Microbiol 37, 2255-2261 (1999).

    'Development of amplified 16S ribosomal DNA restriction analysis for identification of Actinomyces species and comparison with pyrolysis-mass spectromentry and conventional biochemical tests ' () 37 J Clin Microbiol : 2255 -2261.

    • Search Google Scholar
  • Hall, V., Talbot, P. R., Stubbs, S. L., Duerden, B. I.: Identification of clinical isolates of Actinomyces species by amplified 16S ribosomal DNA restriction analysis. J Clin Microbiol 39, 3555-3562 (2001).

    'Identification of clinical isolates of Actinomyces species by amplified 16S ribosomal DNA restriction analysis ' () 39 J Clin Microbiol : 3555 -3562.

    • Search Google Scholar
  • Urbán, E.: Epidemiological investigation of toxin producing Clostridium difficile and antibiotic resistant Bacteroides strains with the use of traditional and molecular biological methods. PhD Thesis (2002).

  • Wilcox, M. H.: Clostridium difficile — setting the scene. J Antimicrob Chemother 41 (Suppl. C), 1-3 (1998).

    'Clostridium difficile — setting the scene ' () 41 J Antimicrob Chemother : 1 -3.

  • Sack, R. B., Albert, M. J., Alam, K., Neogi, P. K. B., Akbar, M. S.: Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J Clin Microbiol 32, 960-963 (1994).

    'Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study ' () 32 J Clin Microbiol : 960 -963.

    • Search Google Scholar
  • Brazier, J. S.: The diagnosis of Clostridium difficile-associated disease. J Antimicrob Chemother 41 (Suppl C), 29-40 (1998).

    'The diagnosis of Clostridium difficile-associated disease ' () 41 J Antimicrob Chemother : 29 -40.

    • Search Google Scholar
  • Weikel, C. S., Grieco, F. D., Reuben, J., Myers, L. L., Sack, L. B.: Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun 60, 321-327 (1992).

    'Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology ' () 60 Infect Immun : 321 -327.

    • Search Google Scholar
  • Bélanger, S. D., Boissinot, M., Clairoux, N., Picard, F. J., Bergeron, M. G.: Rapid detection of Clostridium difficile in feces by real-time PCR. J Clin Microbiol 41, 730-734 (2003).

    'Rapid detection of Clostridium difficile in feces by real-time PCR ' () 41 J Clin Microbiol : 730 -734.

    • Search Google Scholar
  • Foulon, I., Piérard, D., Muyldermans, G., Vandoorslaer, K., Soetens, O., Rosseel, P., Lauwers, S.: Prevalence of fragilysin gene in Bacteroides fragilis isolates from blood and other extraintestinal samples. J Clin Microbiol 41, 4428-4430 (2003).

    'Prevalence of fragilysin gene in Bacteroides fragilis isolates from blood and other extraintestinal samples ' () 41 J Clin Microbiol : 4428 -4430.

    • Search Google Scholar
  • Terhes, G., Urbán, E., Sóki, J., Hamid, K. A., Nagy, E.: Community-acquired Clostridium difficile caused by binary toxin, toxin A, toxin B gene-positive isolates in Hungary. J Clin Microbiol 42, 4316-4318 (2004).

    'Community-acquired Clostridium difficile caused by binary toxin, toxin A, toxin B gene-positive isolates in Hungary ' () 42 J Clin Microbiol : 4316 -4318.

    • Search Google Scholar
  • Terhes, G., Sóki, J., Urbán, E., Nagy, E.: Prevalence of bft isoforms in Bacteroides fragilis strains of different origines in Hungary. Anaerobe 11, 52 (2005).

    'Prevalence of bft isoforms in Bacteroides fragilis strains of different origines in Hungary ' () 11 Anaerobe : 52.

    • Search Google Scholar
  • Brazier, J. S.: The epidemiology and typing of Clostridium difficile. J Antimicrob Chemother 41 (Suppl C), 47-57 (1998).

    'The epidemiology and typing of Clostridium difficile ' () 41 J Antimicrob Chemother : 47 -57.

    • Search Google Scholar
  • Urbán, E., Brazier, J. S., Sóki, J., Nagy, E., Duerden, B. I.: PCR ribotyping of clinically important Clostridium difficile strains from Hungary. J Med Microbiol 50, 1082-1086 (2001).

    'PCR ribotyping of clinically important Clostridium difficile strains from Hungary ' () 50 J Med Microbiol : 1082 -1086.

    • Search Google Scholar
  • Rasmussen, B. A., Bush, K., Tally, F. P.: Antimicrobial resistance in Bacteroides. Clin Infect Dis 16, S390-S400 (1993).

    'Antimicrobial resistance in Bacteroides ' () 16 Clin Infect Dis : S390 -S400.

  • Gal, M., Brazier, J. S.: Metronidazole resistance in Bacteroides spp. carrying nim genes and selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother 54, 109-116 (2004).

    'Metronidazole resistance in Bacteroides spp. carrying nim genes and selection of slow-growing metronidazole-resistant mutants ' () 54 J Antimicrob Chemother : 109 -116.

    • Search Google Scholar
  • Podglajen. I., Breuil, J., Bordon, F., Gutmann, L., Collatz, E.: A silent carbapenemase gene in strains of B. fragilis can be expressed after a one step mutation. FEMS Microbiol Lett 91, 21-30 (1992).

    'A silent carbapenemase gene in strains of B. fragilis can be expressed after a one step mutation ' () 91 FEMS Microbiol Lett : 21 -30.

    • Search Google Scholar
  • Podglajen, I., Breiul, J., Collatz, E.: Insertion of a novel DNA sequence, IS1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol 12, 105-114 (1994).

    'Insertion of a novel DNA sequence, IS1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis ' () 12 Mol Microbiol : 105 -114.

    • Search Google Scholar
  • Trinh, S., Haggoud, A., Reysset, G., Sebald, M.: Plasmids pIP419 and pIP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. Microbiology 141, 927-935 (1995).

    'Plasmids pIP419 and pIP421 from Bacteroides 5-nitroimidazole resistance genes and their upstream insertion sequence elements ' () 141 Microbiology : 927 -935.

    • Search Google Scholar
  • Turner, P., Edwards, R., Weston, V., Gazis, A., Ispahani, P., Greenwood, D.: Simultaneous resistance to metronidazole, coamoxiclav, and imipenem in clinical isolates of Bacteroides fragilis. Lancet 345, 1275-1277 (1995).

    'Simultaneous resistance to metronidazole, coamoxiclav, and imipenem in clinical isolates of Bacteroides fragilis ' () 345 Lancet : 1275 -1277.

    • Search Google Scholar
  • Löfmark, S., Fang, H., Hedberg, M., Edlund, C.: Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother 49, 1253-1256 (2005).

    'Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates ' () 49 Antimicrob Agents Chemother : 1253 -1256.

    • Search Google Scholar
  • Sóki, J., Fodor, E., Hecht, D. W., Edwards, R., Rotimi, V. O., Kerekes, I., Urbán, E., Nagy, E.: Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J Med Microbiol 53, 413-419 (2004).

    'Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait ' () 53 J Med Microbiol : 413 -419.

    • Search Google Scholar
  • Nagy, E., Sóki, J., Urbán, E., Szőke, I., Fodor, E., Edwards, R.: Occurrence of metronidazole and imipenem resistance among Bacteroides fragilis group clinical isolates in Hungary. Acta Biologica Hungarica 52, 271-280 (2001).

    'Occurrence of metronidazole and imipenem resistance among Bacteroides fragilis group clinical isolates in Hungary ' () 52 Acta Biologica Hungarica : 271 -280.

    • Search Google Scholar

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jul 2020 3 0 0
Aug 2020 1 0 0
Sep 2020 9 3 2
Oct 2020 4 0 0
Nov 2020 7 0 0
Dec 2020 10 0 0
Jan 2021 0 0 0