View More View Less
  • 1 Hungarian Academy of Sciences Plant Protection Institute, Centre for Agricultural Research H-1525 Budapest P.O. Box 102 Hungary
  • | 2 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Sciences H-4032 Debrecen Egyetem tér 1 Hungary
  • | 3 Szent István University Mycology Group of the Hungarian Academy of Sciences, Institute of Plant Protection H-2103 Gödöllő Páter K. u. 1 Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Stress sensitivity of three related phytopathogenic Fusarium species (Fusarium graminearum, Fusarium oxysporum and Fusarium verticillioides) to different oxidative, osmotic, cell wall, membrane, fungicide stressors and an antifungal protein (PAF) were studied in vitro. The most prominent and significant differences were found in oxidative stress tolerance: all the three F. graminearum strains showed much higher sensitivity to hydrogen peroxide and, to a lesser extent, to menadione than the other two species. High sensitivity of F. verticillioides strains was also detectable to an azole drug, Ketoconazole. Surprisingly, no or limited differences were observed in response to other oxidative, osmotic and cell wall stressors. These results indicate that fungal oxidative stress response and especially the response to hydrogen peroxide (this compound is involved in a wide range of plant-fungus interactions) might be modified on niche-specific manner in these phylogenetically related Fusarium species depending on their pathogenic strategy. Supporting the increased hydrogen peroxide sensitivity of F. graminearum, genome-wide analysis of stress signal transduction pathways revealed the absence one CatC-type catalase gene in F. graminearum in comparison to the other two species.

  • Schmidt-Heydt, M., Baxter, E., Geisen, R., Magan, N.: Physiological relationship between food preservatives, environmental factors, ochratoxin and otapksPv gene expression by Penicillium verrucosum. Int J Food Microbiol 119, 277–283 (2007).

    Magan N. , 'Physiological relationship between food preservatives, environmental factors, ochratoxin and otapksPv gene expression by Penicillium verrucosum ' (2007 ) 119 Int J Food Microbiol : 277 -283.

    • Search Google Scholar
  • Brown, A.J.P., Haynes, K., Quinn, J.: Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12, 384–391 (2009).

    Quinn J. , 'Nitrosative and oxidative stress responses in fungal pathogenicity ' (2009 ) 12 Curr Opin Microbiol : 384 -391.

    • Search Google Scholar
  • Hampton, M.B., Kettle, A.J., Winterbourn, C.C.: Inside the neutrophil phagosome: Oxidants, myeloperoxidase and bacterial killing. Blood 92, 3007–3017 (1998).

    Winterbourn C.C. , 'Inside the neutrophil phagosome: Oxidants, myeloperoxidase and bacterial killing ' (1998 ) 92 Blood : 3007 -3017.

    • Search Google Scholar
  • Heller, J., Tudzynski, P.: Reactive oxygen species in phytopathogenic fungi: Signaling, development and disease. Annu Rev Phytopathol 49, 369–390 (2011).

    Tudzynski P. , 'Reactive oxygen species in phytopathogenic fungi: Signaling, development and disease ' (2011 ) 49 Annu Rev Phytopathol : 369 -390.

    • Search Google Scholar
  • Horbach, R., Navarro-Quesada, A.R., Knogge, W., Deising, H.B.: When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J Plant Physiol 168, 51–62 (2011).

    Deising H.B. , 'When and how to kill a plant cell: Infection strategies of plant pathogenic fungi ' (2011 ) 168 J Plant Physiol : 51 -62.

    • Search Google Scholar
  • Barna, B., Fodor, J., Harrach, B.D., Pogány, M., Király, Z.: The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and bioptrophic pathogens. Plant Physiol Biochem 59, 37–43 (2012).

    Király Z. , 'The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and bioptrophic pathogens ' (2012 ) 59 Plant Physiol Biochem : 37 -43.

    • Search Google Scholar
  • Lai, Z., Mengiste, T.: Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens. Curr Opin Plant Biol 16, 505–512 (2013).

    Mengiste T. , 'Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens ' (2013 ) 16 Curr Opin Plant Biol : 505 -512.

    • Search Google Scholar
  • Hansberg, W., Salas-Lizana, R., Domínguez, L.: Fungal catalases: Function, phylogenetic origin and structure. Arc Biochem Biophys 525, 170–180 (2012).

    Domínguez L. , 'Fungal catalases: Function, phylogenetic origin and structure ' (2012 ) 525 Arc Biochem Biophys : 170 -180.

    • Search Google Scholar
  • Jayashree, T., Subramanyam, C.: Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Rad Biol Med 29, 981–985 (2000).

    Subramanyam C. , 'Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus ' (2000 ) 29 Free Rad Biol Med : 981 -985.

    • Search Google Scholar
  • Schmidt-Heydt, M., Magan, N., Geisen, R.: Stress induction of mycotoxin biosynthesis genes by abiotic factors. FEMS Microbiol Let 284, 142–149 (2008).

    Geisen R. , 'Stress induction of mycotoxin biosynthesis genes by abiotic factors ' (2008 ) 284 FEMS Microbiol Let : 142 -149.

    • Search Google Scholar
  • Kohut, G., Ádám, A.L., Fazekas, B., Hornok, L.: N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum. Int J Food Microbiol 30, 65–69 (2009).

    Hornok L. , 'N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum ' (2009 ) 30 Int J Food Microbiol : 65 -69.

    • Search Google Scholar
  • Nikolaou, E., Agrafioti, I., Stumpf, M., Quinn, J., Stansfield, I. et al.: Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9, 44–53 (2009).

    Stansfield I. , 'Phylogenetic diversity of stress signalling pathways in fungi ' (2009 ) 9 BMC Evol Biol : 44 -53.

    • Search Google Scholar
  • Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T. et al.: Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol 53, 1785–1796 (2004).

    Kikuchi T. , 'Fungicide activity through activation of a fungal signalling pathway ' (2004 ) 53 Mol Microbiol : 1785 -1796.

    • Search Google Scholar
  • Segmüller, N., Ellendorf, U., Tudzynski, B., Tudzynski, P.: BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukar Cell 6, 211–221 (2007).

    Tudzynski P. , 'BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea ' (2007 ) 6 Eukar Cell : 211 -221.

    • Search Google Scholar
  • Ádám, A.L., Kohut, G., Hornok, L.: Fphog1, a HOG-type MAP kinase, is involved in multistress response in Fusarium proliferatum. J Basic Microbiol 48, 151–159 (2008).

    Hornok L. , 'Fphog1, a HOG-type MAP kinase, is involved in multistress response in Fusarium proliferatum ' (2008 ) 48 J Basic Microbiol : 151 -159.

    • Search Google Scholar
  • Ádám, A.L., Kohut, G., Hornok, L.: Cloning and characterization of a HOG-type MAP kinase encoding gene from Fusarium proliferatum. Acta Phytopathol Entomol Hung 43, 1–13 (2008).

    Hornok L. , 'Cloning and characterization of a HOG-type MAP kinase encoding gene from Fusarium proliferatum ' (2008 ) 43 Acta Phytopathol Entomol Hung : 1 -13.

    • Search Google Scholar
  • Izumitsu, K., Yoshimi, A., Kubo, D., Morita, A., Saitoh. Y. et al.: The MAPKK kinase Chste11 regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus. Curr Genet 55, 439–448 (2009).

    Saitoh Y. , 'The MAPKK kinase Chste11 regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus ' (2009 ) 55 Curr Genet : 439 -448.

    • Search Google Scholar
  • Hagiwara, D., Asano, Y., Marui, J., Yoshimi, A., Mizuno, T. et al.: Transcriptional profiling of Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genet Biol 46, 868–878 (2009).

    Mizuno T. , 'Transcriptional profiling of Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress ' (2009 ) 46 Fungal Genet Biol : 868 -878.

    • Search Google Scholar
  • Zheng, D., Zhang, S., Zhou, X., Wang, C., Xiang, P. et al.: The FgHog1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS One 7, e49495 (2012).

    Xiang P. , 'The FgHog1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum ' (2012 ) 7 PLoS One : e49495 -.

    • Search Google Scholar
  • Ochiai, N., Tokai, T., Nishiuchi, T., Takahashi-Ando, N., Fujimura, M. et al.: Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Biophys Res Com 363, 639–644 (2007).

    Fujimura M. , 'Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum ' (2007 ) 363 Biochem Biophys Res Com : 639 -644.

    • Search Google Scholar
  • Chen, C., Harel, A., Gorovoits, R., Yarden, O., Dickman, M.B.: MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing. Mol Plant Microbe Interact 17, 404–413 (2004).

    Dickman M.B. , 'MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing ' (2004 ) 17 Mol Plant Microbe Interact : 404 -413.

    • Search Google Scholar
  • Mehrabi, R., Zwiers, L.H., de Waard, M.A., Kema, G.H.: MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 19, 1262–1271 (2006).

    Kema G.H. , 'MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola ' (2006 ) 19 Mol Plant Microbe Interact : 1262 -1271.

    • Search Google Scholar
  • Leslie, J.F., Summerell, B.: Fusarium Laboratory Manual. Blackwell Publishing, Oxford, 2006.

    Summerell B. , '', in Fusarium Laboratory Manual , (2006 ) -.

  • Cappellini, R., Peterson, J.L.: Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae. Mycologia 57, 962–966 (1965).

    Peterson J.L. , 'Macroconidium formation in submerged cultures by a non-sporulating strain of Gibberella zeae ' (1965 ) 57 Mycologia : 962 -966.

    • Search Google Scholar
  • Nirenberg, H.I.: Untersuchungen über die morphologische und biologische differenzierung in der Fusarium section Liseola. Mitteilungen aus der Biologischen Bundesanstalt f. Landund Forstwirtschaft 169, 1–17 (1976).

    Nirenberg H.I. , 'Untersuchungen über die morphologische und biologische differenzierung in der Fusarium section Liseola ' (1976 ) 169 Mitteilungen aus der Biologischen Bundesanstalt f. Landund Forstwirtschaft : 1 -17.

    • Search Google Scholar
  • Hegedűs, N., Leiter, É., Kovács, B., Tomori, V., Kwon, N.J. et al.: The small molecular mass antifungal protein of Penicillium chrysogenum — a mechanism of action oriented review. J Basic Microbiol 51, 561–571 (2011).

    Kwon N.J. , 'The small molecular mass antifungal protein of Penicillium chrysogenum — a mechanism of action oriented review ' (2011 ) 51 J Basic Microbiol : 561 -571.

    • Search Google Scholar
  • Karányi, Z., Holb, I., Hornok, L., Pócsi, I., Miskei, M.: FSRD: Fungal Stress Response Database. Database (Oxford) 2013: bat037. doi: 10.1093/database/ (2013)

    Miskei M. , '', in FSRD: Fungal Stress Response Database , (2013 ) -.

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).

    Lipman D.J. , 'Basic local alignment search tool ' (1990 ) 215 J Mol Biol : 403 -410.

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. et al.: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739 (2011).

    Nei M. , 'MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods ' (2011 ) 28 Mol Biol Evol : 2731 -2739.

    • Search Google Scholar
  • Aguilera, J., Rodríguez-Vargas, S., Prieto, J.A.: The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Mol Microbiol 56, 228–239 (2005).

    Prieto J.A. , 'The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae ' (2005 ) 56 Mol Microbiol : 228 -239.

    • Search Google Scholar
  • Barna, B., Leiter, É., Hegedűs, N., Bíró, T., Pócsi, I.: Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J Basic Microbiol 48, 516–520 (2008).

    Pócsi I. , 'Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens ' (2008 ) 48 J Basic Microbiol : 516 -520.

    • Search Google Scholar
  • Kawasaki, L., Aguirre, J.: Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183, 1434–1440 (2001).

    Aguirre J. , 'Multiple catalase genes are differentially regulated in Aspergillus nidulans ' (2001 ) 183 J Bacteriol : 1434 -1440.

    • Search Google Scholar
  • Molina, L., Kahmann, R.: An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19, 2293–2309 (2007).

    Kahmann R. , 'An Ustilago maydis gene involved in H2O2 detoxification is required for virulence ' (2007 ) 19 Plant Cell : 2293 -2309.

    • Search Google Scholar
  • Nathues, E., Joshi, S., Tenberge, K.B., Von Den Driesch, M., Oeser, B. et al.: CPTF1, a CREB-like transcrioption factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol Plant Microbe Interact 17, 383–393 (2004).

    Oeser B. , 'CPTF1, a CREB-like transcrioption factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale ' (2004 ) 17 Mol Plant Microbe Interact : 383 -393.

    • Search Google Scholar
  • Hogenhout, S.A., Van der Hoorn, R.A., Terauchi, R., Kamoun, S.: Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22, 115–122 (2009).

    Kamoun S. , 'Emerging concepts in effector biology of plant-associated organisms ' (2009 ) 22 Mol Plant Microbe Interact : 115 -122.

    • Search Google Scholar
  • Zhang, X.W., Jia, L.J., Zhang, Y., Jiang, G., Li, X. et al.: In planta stage — specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. The Plant Cell 24, 5159–5176 (2012).

    Li X. , 'In planta stage — specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles ' (2012 ) 24 The Plant Cell : 5159 -5176.

    • Search Google Scholar
  • Ding, L., Xu, H., Yi, H., Yang, L., Kong, Z. et al.: Resistance to hemi-biotrophic Fusarium graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One 6, e19008 (2011).

    Kong Z. , 'Resistance to hemi-biotrophic Fusarium graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways ' (2011 ) 6 PLoS One : e19008 -.

    • Search Google Scholar
  • Nguyen, V. T., Schaefer, W., Bormann, J.: The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol Plant Microbe Inter 25, 1142–1156 (2012).

    Bormann J. , 'The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum ' (2012 ) 25 Mol Plant Microbe Inter : 1142 -1156.

    • Search Google Scholar
  • Kawasaki, L., Wysong, D., Diamond, R., Aguirre, J.: Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. J Bacteriol 179, 3284–3292 (1997).

    Aguirre J. , 'Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress ' (1997 ) 179 J Bacteriol : 3284 -3292.

    • Search Google Scholar
  • Hagiwara, D., Asano, Y., Marui, J., Furukawa, K., Kanamaru, K. et al.: The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Biosci Biotechnol Biochem 71, 1003–1014 (2007).

    Kanamaru K. , 'The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans ' (2007 ) 71 Biosci Biotechnol Biochem : 1003 -1014.

    • Search Google Scholar
  • Vargas-Pérez, I., Sánchez, O., Kawasaki, L., Georgellis, D., Aguirre, J.: Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryot Cell 6, 1570–1583 (2007).

    Aguirre J. , 'Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans ' (2007 ) 6 Eukaryot Cell : 1570 -1583.

    • Search Google Scholar
  • Sakamoto, K., Arima, T.H., Iwashita, K., Yamada, O., Gomi, K. et al.: Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet Biol 45, 922–932 (2008).

    Gomi K. , 'Aspergillus oryzae atfB encodes a transcription factor required for stress tolerance in conidia ' (2008 ) 45 Fungal Genet Biol : 922 -932.

    • Search Google Scholar
  • Calera, J.A., Paris, S., Monod, M., Hamilton, A.J., Debeaupuis, J.P. et al.: Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect Immun 65, 4718–4724 (1997).

    Debeaupuis J.P. , 'Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus ' (1997 ) 65 Infect Immun : 4718 -4724.

    • Search Google Scholar
  • Paris, S., Wysong, D., Debeaupuis, J.P., Shibuya, K., Philippe, B. et al.: Catalases of Aspergillus fumigatus. Infect Immun 71, 3551–3562 (2003).

    Philippe B. , 'Catalases of Aspergillus fumigatus ' (2003 ) 71 Infect Immun : 3551 -3562.

  • Hisada, H., Hata, Y., Kawato, A., Abe, Y., Akita, O.: Cloning and expression analysis of two catalase genes from Aspergillus oryzae. J Biosci Bioeng 99, 562–568 (2005).

    Akita O. , 'Cloning and expression analysis of two catalase genes from Aspergillus oryzae ' (2005 ) 99 J Biosci Bioeng : 562 -568.

    • Search Google Scholar
  • Kaiserer, L., Oberparleiter, C., Weiler-Görz, R., Burgstaller, W., Leiter, É. et al.: Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180, 204–210 (2003).

    Leiter , 'Characterization of the Penicillium chrysogenum antifungal protein PAF ' (2003 ) 180 Arch Microbiol : 204 -210.

    • Search Google Scholar
  • Leiter, É., Szappanos, H., Oberparleiter, C., Kaiserer, L., Csernoch, L. et al.: Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49, 2445–2453 (2005).

    Csernoch L. , 'Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype ' (2005 ) 49 Antimicrob Agents Chemother : 2445 -2453.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 10 2 0
Jul 2021 15 0 0
Aug 2021 10 0 0
Sep 2021 1 0 0
Oct 2021 13 0 0
Nov 2021 2 0 0
Dec 2021 0 0 0