Author: György Csaba1
View More View Less
  • 1 Semmelweis University, Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

The unicellular eukaryote Tetrahymena synthesize, store and secrete biogenic amines (histamine, serotonin, epinephrine, dopamine, melatonin) and also can take up amines from the milieu. It also has (G-protein-coupled) receptors (binding sites) for these amines as well, as second messengers. The factors infuencing the mentioned processes are shown. For certain amines the genes and the coded enzymes are demonstrated. The amines influence phagocytosis, cell division, ciliary regeneration, glucose metabolism and chemotaxis. There are interhormone actions between the amines, and between the amines and other hormones produced by Tetrahymena. The critical review discusses the role of amines in the early stages of evolution and compares this to their functions in mammals. It tries to give answer how and why biogenic amines were selected to hormones, and why new functions formed for them in higher ranked animals, preserving also the ancient ones.

  • 1.

    Nanney, D.L.: Experimental ciliatology. Wiley and Sons, New York p. 304 (1980).

  • 2.

    Turlejski, K.: Evolutionary ancient roles of serotonin: long-lasting regulation of activity and development. Acta Neurobiol Exp 56, 619636 (1996).

    • Search Google Scholar
    • Export Citation
  • 3.

    Roschina, V.V.: Evolutionary considerations of neurotransmitters in microbial, plant and animal cells. In: Lyte, M., Freestone, P.P.E. (eds) Microbial Endocrinology. Springer, 2010, pp. 1744.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kyriakidis, D.A., Theodorou, M.C., Tiligada, E.: Histamine in two component systemmediated bacterial signaling. Front Biosci 17, 11081119 (2012).

    • Search Google Scholar
    • Export Citation
  • 5.

    Vidal-Gadea, A.G., Pierce-Shimomura, J.T.: Conserved role of dopamine in the modulation of behavior. Comm Integr Biol 55, 440447 (1012).

    • Search Google Scholar
    • Export Citation
  • 6.

    Reiter. R.J. , Tan, D.X., Osuna, C., Gitto, E.: Actions of melatonin in the reduction of oxidative stress. A review. J. Biomed Sci 7, 444458 (2000).

    • Search Google Scholar
    • Export Citation
  • 7.

    Freestone, P.P., Sandrini, S.M., Haigh, R.D., Lyte, M.: Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16, 5564 (2008).

    • Search Google Scholar
    • Export Citation
  • 8.

    Csaba, G., Kovács, P., Pállinger, É.: Edac fixation increases the demonstrability of biogenic amines in the unicellular Tetrahymena: A flow cytometric and confocal microscopic comparative analysis. Cell Bol Int 30, 345348 (2006).

    • Search Google Scholar
    • Export Citation
  • 9.

    Csaba, G.: The hormonal system of the unicellular Tetrahymena: a review with evolutionary aspects. Acta Microbiol Immunol Hung 59, 131156 (2012).

    • Search Google Scholar
    • Export Citation
  • 10.

    Csaba, G., Lajkó, E., Pállinger, É.: Effect of different concentrations of serotonin, histamine and insulin on the hormone (serotonin and ACTH) production of Tetrahymena in nutrient-free physiological milieu. Exp Parasitol 129, 179182 (2011).

    • Search Google Scholar
    • Export Citation
  • 11.

    Csaba, G., Lajkó, E., Pállinger, É.: Comparison of the effect of hormones on the hormone synthesis of Tetrahymena in medium or salt solution. Cell Biol Int 34, 10951098 (2010).

    • Search Google Scholar
    • Export Citation
  • 12.

    Csaba, G., Kovács, P., Pállinger, É.: Increased hormone levels in Tetrahymena after longlasting starvation. Cell Biol Int 31, 924928 (2007).

    • Search Google Scholar
    • Export Citation
  • 13.

    Csaba, G., Sudár, F., Ubornyák, L.: Comparative study of the internalization and nuclear localization of amino acid type hormones in Tetrahymena and rat lymphocytes. Exp Clin Endocrinol 82, 6167 (1983).

    • Search Google Scholar
    • Export Citation
  • 14.

    Csaba, G.: Presence in and effects of pineal indoleamines at very low level of phylogeny. Experientia 15, 627634 (1993).

  • 15.

    Gundersen, R.E., Thompson, G.A. Jr. Further studies of dopamine metabolism and function in Tetrahymena. J Protozool 32, 2531 (1985).

  • 16.

    Kőhidai, L., Vakkuri, O., Keresztesi, M., Leppaluoto J., Csaba, G.: Melatonin in the unicellular Tetrahymena pyriformis: effects of different lighting conditions. Cell Biochem Funct 20, 269272 (2002).

    • Search Google Scholar
    • Export Citation
  • 17.

    Hardeland R. : Melatonin and 5-methoxytryptamine in non-metazoans. Nutr Dev 39, 399408 (1999).

  • 18.

    Kőhidai, L., Vakkuri, O., Keresztesi, M., Leppaluoto, J., Csaba, G.: Induction of melatonin synthesis in Tetrahymena pyriformis by hormonal imprinting – a unicellular “factory” of the indolamine. Cell Mol Biol 49, 521523 (2003).

    • Search Google Scholar
    • Export Citation
  • 19.

    Hardeland, R., Poeggeler, B.: Non-vertebrate melatonin. J Pineal Res 34, 233241 (2003).

  • 20.

    Linder, J.U., Schultz, J.E.: Guanylyl cyclases in unicellular organisms. Mol Cell Biochem 230, 149158 (2002).

  • 21.

    Kőhidai, L., Barsony, J., Roth, J., Marx, S.J.: Rapid effects of insulin on cyclic GMP location in an intact protozoan. Experientia 48, 476481 (1992).

    • Search Google Scholar
    • Export Citation
  • 22.

    Shpakov, A.O., Derkach, K.V., Uspenskaya, Z.I.: Glucose and cyclic adenosine monophosphate stimulate activities of adenylate cyclase and guanylate cyclase of Tetrahymena pyriformis infusoria. Bull Exp Biol Med 152, 427430 (2012).

    • Search Google Scholar
    • Export Citation
  • 23.

    Kassis, S, Kindler, S.H.: Dispersion of epinephrine sensitive and insensitive adenylate cyclase from the ciliate Tetrahymena pyriformis. Biochim, Biophys Acta 391, 513516 (1975).

    • Search Google Scholar
    • Export Citation
  • 24.

    Shpakov, A.O., Derkach, K.V., Uspenskaya, Z.I., Shpakova, E.A., Kuznetsova, L.A., Plesneva, S.A., Pertseva, M.N.: Molecular mechanisms of regulatory action of adrenergic receptor agonists on functional activity of adenylyl cyclase signaling system of the ciliate Dileptus anser and Tetrahymena pyriformis. Tsitologia 46, 317325 (2004).

    • Search Google Scholar
    • Export Citation
  • 25.

    Csaba, G., Nagy, S.U., Lantos, T.: Are biogenic amines acting on Tetrahymena through a cyclic AMP mechanism? Acta Biol Med Germ 35, 259262 (1976).

    • Search Google Scholar
    • Export Citation
  • 26.

    Derkach, K.V., Shpakov, A.O., Uspenskaja, Z.I., Iudin, A.L.: Functional characteristics of calcium-sensitive adenylyl cyclase of ciliate Tetrahymena pyriformis. Tsitologia 52, 967972 (2010).

    • Search Google Scholar
    • Export Citation
  • 27.

    Derkach, K.V., Shpakov, A.O., Uspenskaja, Z.I., Iudin, A.L.: The study of molecular mechanisms of action of natural amino acids and serotonin on adenylyl and guanylyl cyclases of the ciliates. Tsitologia 54, 270277 (2012).

    • Search Google Scholar
    • Export Citation
  • 28.

    Csaba, G., Lantos, T.: Effect of cyclic AMP and theophylline on phagocytotic activity of Tetrahymena pyriformis. Experientia 32, 321322 (1976).

    • Search Google Scholar
    • Export Citation
  • 29.

    Csaba, G., Nagy, S.U.: Effect of vertebrate hormones on the cyclic AMP level in Tetrahymena. Acta Biol Med Ger 35, 13991401 (1976).

  • 30.

    Hegyesi, H., Kovács, P., Falus, A., Csaba, G.: Presence and localisation of histidine decarboxylase enzyme (HDC) and histamine in Tetrahymena pyriformis. Cell Biol Int 22, 493497 (1998).

    • Search Google Scholar
    • Export Citation
  • 31.

    Hegyesi, H., Szalai, C., Falus, A., Csaba, G.: The histidine decarboxylase (HDC) gene of Tetrahymena pyriformis is similar to the mammalian one. A study of HDC expression. Biosci Rep 19, 7379 (1999).

    • Search Google Scholar
    • Export Citation
  • 32.

    Ness, J.C., Morse, D.E.: Regulation of galactokinase gene expression in Tetrahymena thermophila. I. Intracellular catecholamine control of galactokinase expression. J Biol Chem 260, 1000110012 (1985).

    • Search Google Scholar
    • Export Citation
  • 33.

    Nomura, T., Tazawa, M., Ohtsuki, M., Sumi-Ichinose, C., Hagino, Y., Ota, A., Nakashima, A., Mori, K., Sugimoto, T., Ueno, O., Nozawa, Y., Ichinose, H., Nagatsu, T.: Enzymes related to catecholamine biosynthesis in Tetrahymena pyriformis. Presence of GTP cyclohydrolase I. Comp Biochem Physiol B 120, 733760 (1998).

    • Search Google Scholar
    • Export Citation
  • 34.

    Gundersen, R.E., Thompson, G.A.: Further studies of dopamine metabolism and function in Tetrahymena. J Protozool 32, 2531 (1985).

  • 35.

    Feldman J.M. , Roche, J.M., Blum, J.J.: Monoamino oxidase and catechol-D-methyl transferase activity in Tetrahymena. J Protozool 24, 459462 (1977).

    • Search Google Scholar
    • Export Citation
  • 36.

    Iwata, H., Kariya, K.: Adrenergic mechanism in Tetrahymena. I. Changes in monoamino oxidase activity during growth. Experientia 29, 265266 (1973).

    • Search Google Scholar
    • Export Citation
  • 37.

    Csaba, G., Lajkó, E., Pállinger, É.: Serotonin in Tetrahymena – how does it work? Acta Protozool 49, 133138 (2010).

  • 38.

    Csaba, G., Sudár, F., Pados, R.: Binding and internalization of 3H-epinephrine in Tetrahymena. Endokrinologie 76, 340344 (1980).

  • 39.

    Ud-Daula, A., Pfister, G., Schramm, K.W.: Identification of dopamine receptor in Tetrahymena thermophila by fluorescent ligands. Pak J Biol Sci 15, 11331138 (2012).

    • Search Google Scholar
    • Export Citation
  • 40.

    Csaba, G., Ubornyák, L.: Quantitative observations on triiodothyronine and histamine binding in Tetrahymena. Acta Protozool 18, 491496 (1979).

    • Search Google Scholar
    • Export Citation
  • 41.

    Kovács, P., Darvas, Z., Csaba, G.: Investigation of histamine-antihistamine differentiation ability of Tetrahymena receptors, by means of lectins and antihistamine antibodies. Acta Biol Acad Sci Hung 32, 111117 (1981).

    • Search Google Scholar
    • Export Citation
  • 42.

    Csaba, G., Kovács, P., Pállinger, É.: Effect of femtomolar concentrations of hormones on insulin binding by Tetrahymena, as a function of time. Cell Biochem Funct 26, 205209 (2008).

    • Search Google Scholar
    • Export Citation
  • 43.

    Csaba, G., Kovács, P., Tóthfalusi, L., Pállinger, É.: Effects of extremely low concentrations of hormones on the insulin binding by Tetrahymena. Cell Biol Int 30, 957962 (2006).

    • Search Google Scholar
    • Export Citation
  • 44.

    Csaba, G., Lantos, T.: Effect of hormones on Protozoa. Studies on the phagocytotic effect of histamine, 5-hydroxy-tryptamine and indoleacetic acid in Tetrahymena pyriformis. Cytobiologie 7, 361365 (1973).

    • Search Google Scholar
    • Export Citation
  • 45.

    Kovács, P., Csaba, G.: Detection of histamine binding sites (receptors) in Tetrahymena by fluorescent technique. Acta Biol Med Ger 39, 237241 (1980).

    • Search Google Scholar
    • Export Citation
  • 46.

    Csaba, G., Nagy, S.U., Lantos, T.: Cyclic AMP, and its functional relationship in Tetrahymena: a comparison between phagocytosis and glucose uptake. Acta Biol Med Ger 37, 505507 (1978).

    • Search Google Scholar
    • Export Citation
  • 47.

    Csaba, G., Nagy, S.U., Lantos, T.: Are biogenic amines acting on Tetrahymena through a cyclic AMP mechanism? Acta Biol Med Ger 35, 259261 (1976).

    • Search Google Scholar
    • Export Citation
  • 48.

    Schultz, J., Schönefeld, U., Klumpp, S.: Calcium/calmodulin-regulated guanylate cyclase and calcium-permeability in the ciliary membrane from Tetrahymena. Eur J Biochem 137, 8994 (1983).

    • Search Google Scholar
    • Export Citation
  • 49.

    Darvas, Z., Csaba, G.: Dose-dependent impact of pretreatment (imprinting) with histamine and serotonin on the phagocytic activity of Tetrahymena. Acta Microbiol Hung 37, 285287 (1990).

    • Search Google Scholar
    • Export Citation
  • 50.

    Quinones-Maldonado, V., Renaud, F.L.: Effect of biogenic amines on phagocytosis in Tetrahymena thermophila. J Protozool 34, 435438 (1987).

    • Search Google Scholar
    • Export Citation
  • 51.

    Csaba, G., Cserhalmi, M.: Influence of biogenic amines histamine, serotonin on the function of the lysosomal enzymes of the Tetrahymena. Acta Protozool 242, 135138 (1985).

    • Search Google Scholar
    • Export Citation
  • 52.

    Kovács, P., Csapó, C., Csaba, G.: Interrelationship between endocytosis and cell cycle of histamine-stimulated Tetrahymena. Acta Protozool 223–224, 237240 (1983).

    • Search Google Scholar
    • Export Citation
  • 53.

    Csaba, G., Darvas, Z.: Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model. Biosystems 19, 5559 (1986).

    • Search Google Scholar
    • Export Citation
  • 54.

    Csaba, G., Darvas, Z.: Insulin antagonizes the phagocytosis stimulating action of histamine in Tetrahymena. Biosci Rep 12, 2327 (1992).

    • Search Google Scholar
    • Export Citation
  • 55.

    Rothstein, T.L., Blum, J.J.: Lysosomal physiology of Tetrahymena III. Pharmacological studies on acid hydrolase release and the ingestion and egestion of dimethylbenzanthracene particles. J Cell Biol 62, 844859 (1974).

    • Search Google Scholar
    • Export Citation
  • 56.

    Kőhidai, L., Vakkuri, O., Keresztesi, M., Pállinger, É., Leppaluoto, J., Csaba, G.: Impact of melatonin on the cell division, phagocytosis and chemotaxis of Tetrahymena pyriformis. Acta Protozool 41, 8589 (2002).

    • Search Google Scholar
    • Export Citation
  • 57.

    Blum, J.J.: An adrenergic control system in Tetrahymena. Proc Natl Acad Sci USA 58, 8188 (1967).

  • 58.

    Essman, J.: The serotonergic system in Tetrahymena pyriformis. Ric Clin Lab 17, 844859 (1987).

  • 59.

    Iwata, H., Kariya, K., Wada, Y.: Adrenergic mechanism in Tetrahymena. II. Effect of adrenaline on cell proliferation. Jpn J Pharmacol 23, 681688 (1973).

    • Search Google Scholar
    • Export Citation
  • 60.

    Csaba, G., Németh, G., Prohászka, J.: Effect of hormones and related compounds on the multiplication of Tetrahymena. Exp Cell Biol 47, 307311 (1979).

    • Search Google Scholar
    • Export Citation
  • 61.

    Csaba, G., Németh, G.: Enhancement of the sensitivity of Tetrahymena to a second hormonal influence by hormone pretreatment. Acta Biol Med Germ 39, 10271030 (1980).

    • Search Google Scholar
    • Export Citation
  • 62.

    Csaba, G., Németh, G., Juvancz, I., Vargha, P.: Receptor amplifying effect of serotonin and serotonin analogues in a protozoan (Tetrahymena) model system. Acta Physiol Acad Sci Hung 56, 411416 (1980).

    • Search Google Scholar
    • Export Citation
  • 63.

    Hegyesi, H., Csaba, G.: Time and concentration dependence of the growth-promoting activity of insulin and histamine in Tetrahymena. Application the MTT-method for the determination of cell proliferation in a protozoan model. Cell Biol Int 21, 289293 (1997).

    • Search Google Scholar
    • Export Citation
  • 64.

    Goldman, M.E., Gundersen, R.E., Erickson, C.K., Thompson, G.A. Jr.: High performance liquid chromatographic analysis of catecholamines in growing and non-growing Tetrahymena populations. Biochem Biophys Acta 676, 221225 (1981).

    • Search Google Scholar
    • Export Citation
  • 65.

    Brizzi, G., Blum, J.J.: Effect of growth conditions on serotonin content of Tetrahymena pyriformis. J Protozool 17, 563565 (1970).

  • 66.

    Ud-Daula, A., Pfister, G., Schramm, K.W.: Growth inhibition and biodegradation of catecholamines in the ciliated protozoan Tetrahymena pyriformis. J Environ Sci Health A 43, 16101617 (2008).

    • Search Google Scholar
    • Export Citation
  • 67.

    Leclercq, B., Exbrayat, J.M., Duyme, F., DeConink, J.: New approach to model effects of darkness, melatonin and serotonin on Tetrahymena thermophila growth and production of hydrolytic enzymes. Biotechnol Lett 24, 760774 (2002).

    • Search Google Scholar
    • Export Citation
  • 68.

    Kőhidai, L., Karsa, J., Csaba, G.: Effects of hormones on chemotaxis in Tetrahymena: investigations on receptor memory. Microbios 77, 7585 (1994).

    • Search Google Scholar
    • Export Citation
  • 69.

    Kőhidai, L.: Chemotaxis: The proper physiological response to evaluate phylogeny of signal molecules. Acta Biol Hung 50, 375394 (1999).

    • Search Google Scholar
    • Export Citation
  • 70.

    Darvas, Z., Árva, G., Csaba, G., Vargha, P.: Enhancement of cilia regeneration by hormone tratment of Tetrahymena. Acta Microbiol Hung 35, 4548 (1988).

    • Search Google Scholar
    • Export Citation
  • 71.

    Castrodad, F.A., Renaud, F.L., Ortiz, J., Phillips, D.M.: Biogenic amines stimulate regeneration of cilia in Tetrahymena thermophila. J Protozool 35, 260264 (1988).

    • Search Google Scholar
    • Export Citation
  • 72.

    Rodriguez, N., Renaud, F.L.: On the possible role of serotonin in the regulation of regeneration of cilia. J Cell Biol 85, 242247 (1980).

    • Search Google Scholar
    • Export Citation
  • 73.

    Csaba, G., Lantos, T.: Effect of epinephrine on glucose metabolism in Tetrahymena. Endokrinologie 68, 239240 (1976).

  • 74.

    Nandini-Kishore, S.G., Thompson, G.A. Jr.: Increased levels of adenosine 3′,5′-cyclic monophosphate in Tetrahymena stimulated by glucose and mediated by Ca2+ and epinephrine. Proc Natl Acad Sci USA 76, 27082711 (1979).

    • Search Google Scholar
    • Export Citation
  • 75.

    Csaba, G., Kovács, P.: Complex cytophotometric analysis of hormone-induced alterations in the glucose utilisation of Tetrahymena. Endocrinologie 73, 116119 (1979).

    • Search Google Scholar
    • Export Citation
  • 76.

    Kőhidai, L., Csaba, G.: Effects of insulin and histamine in themselves and in combination on the glucose metabolism of Tetrahymena. Acta Biol Hung 36, 281285 (1985).

    • Search Google Scholar
    • Export Citation
  • 77.

    Darvas, Z., Csaba, G.: Effect of histamine and histamine antagonists on the glycogen content of Tetrahymena. Acta Physiol Acad Sci Hung 58, 914 (1981).

    • Search Google Scholar
    • Export Citation
  • 78.

    Roberts, C.T. Jr., Morse, D.E.: Genetic regulation of galactokinase in Tetrahymena by cyclic AMP, glucose and epinephrine. Proc Natl Acad Sci USA 75, 18101814 (1978).

    • Search Google Scholar
    • Export Citation
  • 79.

    Csaba, G., Pálliger, É.: Is there a hormonal network in Tetrahymena? A systematic investigation of hormonal effects on the hormone content. Cell Biochem Funct 26, 303308 (2008).

    • Search Google Scholar
    • Export Citation
  • 80.

    Csaba, G., Lajkó, E., Pállinger, É.: Hormonal effects on Tetrahymena: change in the case of combined treatment. Acta Microbiol Immunol Hung 57, 393399 (2010).

    • Search Google Scholar
    • Export Citation
  • 81.

    Lajkó, E., Pállinger, É., Csaba, G.: Investigations on the triiodothyronine (T3)-specificity of thyrotropic (TSH) and gonadotropic (HCG) hormone in the unicellular Tetrahymena. Acta Microbiol Immunol Hung 58, 8591 (2011).

    • Search Google Scholar
    • Export Citation
  • 82.

    Csaba, G., Pállinger, É.: A general response to stressors by the unicellular Tetrahymena: effect of stress on the hormone levels. Cell Biochem Funct 26, 797800 (2008).

    • Search Google Scholar
    • Export Citation
  • 83.

    Csaba, G., Pállinger, É.: How applicable is the general adaptation syndrome to the unicellular Tetrahymena? Cell Biochem Funct 27, 1215 (2009).

    • Search Google Scholar
    • Export Citation
  • 84.

    Lajkó, E., Pállinger, É., Csaba, G.: Durable effect of heat-stress on the hormone production of Tetrahymena. Effect of insulin on the consequences of stress. Acta Microbiol Immunol Hung 59, 249256 (2012).

    • Search Google Scholar
    • Export Citation
  • 85.

    Csaba, G., Kovács, P., Pállinger, É.: Hormonal interactions in Tetrahymena: effect of hormones on levels of epidermal growth factor (EGF). Cell Biol Int 29, 301305 (2005).

    • Search Google Scholar
    • Export Citation
  • 86.

    Csaba, G., Kovács, P.: Effect of hormones and hormone-induced imprinting on the serotonin level in Tetrahymena: immunocytochemical studies. Microbios 80, 155163 (1994).

    • Search Google Scholar
    • Export Citation
  • 87.

    Janakidevi, K., Devey, J.C., Kidder, G.W.: Serotonin in Protozoa. Arch Biochem Biophys 113, 756759 (1966).

  • 88.

    Csaba, G., Kovács, P., Pállinger, É.: How does the unicellular Tetrahymena utilise the hormones that it produces? Paying a visit to the realm of atto- and zeptomolar concentrations. Cell Tissue Res 327, 199203 (2007).

    • Search Google Scholar
    • Export Citation
  • 89.

    Csaba, G., Pállinger, É.: A general response to stressors by the unicellular Tetrahymena: effect of stress on the hormone levels. Cell Biochem Funct 26, 797800 (2008).

    • Search Google Scholar
    • Export Citation
  • 90.

    Miller, S.L., Urey, H.C., Oró, J.: Origin of organic compounds on the primitive earth and in meteorites. J Mol Evol 9, 5972 (1976).

    • Search Google Scholar
    • Export Citation
  • 91.

    Lenhoff, H.M.: Behavior, hormones, and Hydra. Reasearch on behavior of lower invertebrates may help elucidate some cellular actions of hormones. Science 161, 434442 (1968).

    • Search Google Scholar
    • Export Citation
  • 92.

    Csaba, G.: The unicellular Tetrahymena as a model cell for receptor research. Int Rev Cytol 95, 327377 (1985).

  • 93.

    Csaba, G.: Phylogeny and ontogeny of chemical signaling: origin and development of hormone receptors. Int Rev Cytol 155, 148 (1994).

    • Search Google Scholar
    • Export Citation
  • 94.

    Csaba, G.: Hormonal imprinting in the unicellular Tetrahymena: the proto-model of epigenetics. Acta Microbiol Immunol Hung 59, 291310 (2012)

    • Search Google Scholar
    • Export Citation
  • 95.

    Kőhidai, L., Láng, O., Csaba, G.: Chemotactic range-fitting of amino-acids and its correlations to physicochemical parameters in Tetrahymena pyriformis – evolutionary consequences. Cell Mol Biol 49, 487495 (2003).

    • Search Google Scholar
    • Export Citation
  • 96.

    Darvas, Z., Nozawa, Y., Csaba, G.: Dissimilar effects of L and D amino acids on the growth of Tetrahymena. Biosci Rep 7, 757760 (1987).

    • Search Google Scholar
    • Export Citation
  • 97.

    Csaba, G.: The hormonal system of the unicellular Tetrahymena: a review with evolutionary aspects. Acta Microbiol Immunol Hung 59, 131156 (2012).

    • Search Google Scholar
    • Export Citation
  • 98.

    Christensen, S.T., Guerra, C.F., Awan, A., Wheatley, D.N., Satir, P.: Insulin-receptor-like protein in Tetrahymena thermophila ciliary membranes. Curr Biol 13, R5052 (2003).

    • Search Google Scholar
    • Export Citation
  • 99.

    Csaba, G., Pállinger, É.: Thyrotropin (TSH) regulates triiodothyronine (T3) production in the unicellular Tetrahymena. Acta Biol Hung 62, 228234 (2011).

    • Search Google Scholar
    • Export Citation
  • 100.

    Lajkó, E., Pállinger, É., Csaba, G.: Investigations on the triiodothyronine (T3)-specificity of thyrotropic (TSH) and gonadotropic (HCG) hormone in the unicellular Tetrahymena. Acta Microbiol Immunol Hung 58, 8591 (2011)

    • Search Google Scholar
    • Export Citation
  • 101.

    Christensen, S.T.: Insulin rescues the unicellular eukaryote Tetrahymena from dying in a complete, synthetic nutrient medium. Cell Biol Int 17, 833837 (1993).

    • Search Google Scholar
    • Export Citation
  • 102.

    Lajkó, E., Pállinger, É., Csaba, G.: Effect of glucose on the insulin production and insulin binding of Tetrahymena. Acta Microbiol Immunol Hung 59, 461468 (2012).

    • Search Google Scholar
    • Export Citation
  • 103.

    Csaba, G.: The immuno-endocrine system: Hormones, receptors and endocrine function of immune cells. The packed transport theory. Adv Neuroimm Biol 1, 7185 (2011).

    • Search Google Scholar
    • Export Citation
  • 104.

    Csaba, G.: Immunoendocrinology: faulty hormonal imprinting in the immune system. Acta Microbiol Immunol Hung 61, 89106 (2014).

  • 105.

    Csaba, G.: Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung 61, 241260 (2014).

  • 106.

    Callier, S., Snapyan, M., Le Crom, S., Pru, D., Vincent, J.D., Vernier, P.: Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 95, 489502 (2003).

    • Search Google Scholar
    • Export Citation
  • 107.

    Peroutka, S.J.: 5-Hydroxytryptamine receptors in vertebrates and invertebrates: why are there so many? Neurochem Int 25, 533536 (1994).

    • Search Google Scholar
    • Export Citation
  • 108.

    Vernier, P., Philippe, H., Samama, P., Mallet, J.: Bioamine receptors: evolutionary and functional variations of a structural leitmotiv. EXS 63, 297337 (1993).

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 7 2 2
Sep 2021 15 0 0
Oct 2021 30 1 1
Nov 2021 27 0 0
Dec 2021 23 0 0
Jan 2022 19 3 4
Feb 2022 0 0 0