View More View Less
  • 1 Faculty of Sciences of Sfax, Sfax, Tunisia
  • 2 Centre of Biotechnology of Sfax, Sfax, Tunisia
  • 3 Faculty of Sciences of Sfax, Sfax, Tunisia
  • 4 On AIR s.r.l.,, Genova, Italy
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH2PO4, K2HPO4, FeSO4, MnSO4, and MgSO4 and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett—Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO4, K2HPO4, starch and soybean meal. Indeed, it was found that soybean meal, K2HPO4, KH2PO4 and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett—Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  • 1.

    Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., Dean, D. H.: Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62, 772806 (1998).

    • Search Google Scholar
    • Export Citation
  • 2.

    Ruiz, L. M., Segura, C., Trujillo, J., Orduz, S.: In vivo binding of the Cry 11Bb toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae. Mem Inst Oswaldo Cruz 99, 7379 (2004).

    • Search Google Scholar
    • Export Citation
  • 3.

    El-sersy, N. A., Abou-Elela, G. M.: Antagonistic effect of marine Nocardia brasiliensis against the fish pathogen Vibrio damsela: Application of Plackett-Burman experimental design to evaluate factors affecting the production of the antibacterial agent. IJOO 1, 141150 (2006).

    • Search Google Scholar
    • Export Citation
  • 4.

    Plackett, R. L., Burman, J. P.: The design of optimum multifactorial experiments. Biometrika 33, 305325 (1946).

  • 5.

    Grzegorczyk, M., Husmeier, D., Edwards, K. D., Ghazal, P., Millar, A. J.: Modelling nonstationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler. Bioinformatics 24, 20712078 (2008).

    • Search Google Scholar
    • Export Citation
  • 6.

    Radhakrishnan, N., Scutari, M., Lèbre, S.: Bayesian Networks in R with Applications in Systems Biology. Springer, New York, Heidelberg, Dordrecht, London, 2013, 157 pages.

    • Search Google Scholar
    • Export Citation
  • 7.

    Scutari, M., Denis, J. B.: Bayesian Networks with Examples in R. Chapman & Hall/CRC, 2014, 225 pages.

  • 8.

    Ennouri, K., Ben Khedher, S., Jaoua, S., Zouari, N.: Correlation between delta-endotoxin and proteolytic activities produced by Bacillus thuringiensis var. kurstaki growing in an economic production medium. Biocontrol Sci Techn 23, 756767 (2013).

    • Search Google Scholar
    • Export Citation
  • 9.

    Ghribi, D., Zouari, N., Jaoua, S.: Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by u.v. and nitrous acid affecting metabolic pathways and/or delta-endotoxin synthesis. J Appl Microbiol 97, 338346 (2004).

    • Search Google Scholar
    • Export Citation
  • 10.

    Zouari, N., Dhouib, A., Ellouz, R., Jaoua, S.: Nutritional requirements of a Bacillus thuringiensis subsp. kurstaki strain and use of gruel hydrolysate for the formulation of a new medium for delta-endotoxin production. Appl Biochem Biotech 69, 4152 (1998).

    • Search Google Scholar
    • Export Citation
  • 11.

    Ghribi, D., Zouari, N., Trigui, W., Jaoua, S.: Use of sea water as salts source in starch-and soya bean-based media, for the production of Bacillus thuringiensis bioinsecticides. Process Biochem 42, 374378 (2007).

    • Search Google Scholar
    • Export Citation
  • 12.

    Bradford, M. A.: Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-Dye binding. Anal Biochem 72, 248254 (1976).

    • Search Google Scholar
    • Export Citation
  • 13.

    Castro, P. M. L., Hayter, P. M., Ison, A. P., Bull, A. T.: Application of a statistical design to the optimization of culture medium for recombinant interferon-gamma production by Chinese hamster ovary cells. Appl Microbiol Biotechnol 38, 8490 (1992).

    • Search Google Scholar
    • Export Citation
  • 14.

    Ennouri, K., Ben Hassen, H., Ben Khedher, S., Zouari, N.: Concomitant production of delta-endotoxins and proteases of Bacillus thuringiensis subsp. kurstaki in a low-cost medium: Effect of medium components. Acta Biol Szeged 57, 1319 (2013).

    • Search Google Scholar
    • Export Citation
  • 15.

    Bensi, M., Der Kiureghian, A., Straub, D.: Efficient Bayesian network modeling of systems. Reliab Eng Syst Safe 112, 200213 (2013).

  • 16.

    Benson, M.: Bayesian Networks Handbook. M L Books International, New Delhi, 2015, 126 pages.

  • 17.

    Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, Chichester, 1990, 462 pages.

  • 18.

    Lauritzen, S. L.: Graphical Models Oxford University Press, Oxford, 1996, 312 pages.

  • 19.

    Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Isaac, M., Lehéricy, S., Doyon, J., Benali, H.: Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 32, 228237 (2006).

    • Search Google Scholar
    • Export Citation
  • 20.

    Pearl, J.: Causality: Models Reasoning, and Inference. Cambridge University Press, Cambridge, 2000, 400 pages.

  • 21.

    Opgen-Rhein, R., Strimmer, K.: From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1, 137 (2007).

    • Search Google Scholar
    • Export Citation
  • 22.

    Khuri, A. I., Cornell, J. A.: Response Surfaces: Designs and Analyses, Marcel Dekker, New York, 1987, 405 pages.

  • 23.

    Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., Hauck, L. M.: Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37, 11691188 (2001).

    • Search Google Scholar
    • Export Citation
  • 24.

    Kim, H. M., Kim, J. G., Cho, J. D., Hong, J. W.: Optimization and characterization of UV-curable adhesives for optical communications by response surface methodology. Polym Test 22, 899906 (2003).

    • Search Google Scholar
    • Export Citation
  • 25.

    Icgen, Y., Icgen, B., Ozcengiz, G.: Regulation of crystal protein biosynthesis by Bacillus thuringiensis: Effects of carbon and nitrogen sources. Res Microbiol 9, 605609 (2002).

    • Search Google Scholar
    • Export Citation
  • 26.

    Liu, W. M., Bajpai, R., Bihari, V.: High-density cultivation of sporeformers. Ann NY Acad Sci 721, 310325 (1994).

  • 27.

    Feng, K. C., Liu, B. L., Chan, H. S., Tzeng, Y. M.: Morphology of a spectrum of parasporal endotoxin crystals from cultures of Bacillus thuringiensis ssp. kurstaki isolate A3-4. World J Microb Biot 17, 119123 (2001).

    • Search Google Scholar
    • Export Citation
  • 28.

    Braun, S.: Production of Bacillus thuringiensis insecticides for experimental uses. In: Bioassays of Entomopathologic Microbes and Nematodes, CABI Publishing, Cambridge, 2000, pp. 4972.

    • Search Google Scholar
    • Export Citation
  • 29.

    Yang, X., Wang, S. S.: Development of Bacillus thuringiensis fermentation and process control from a practical perspective. Biotechnol Appl Biochem 28, 9598 (1998).

    • Search Google Scholar
    • Export Citation
  • 30.

    Gupta, R., Beg, Q. K., Khan, S., Chauhan, B.: An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biot 60, 381395 (2002).

    • Search Google Scholar
    • Export Citation
  • 31.

    Bernhard, K., Utz, R.: Production of Bacillus thuringiensis insecticides for experimental and commercial uses. In: Entwistle, P. F., Cory, J. S., Bailey, M. J., Higgs, S. (Eds.) Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice. John Wiley & Sons, Chichester, UK, 1993, pp. 5968.

    • Search Google Scholar
    • Export Citation
  • 32.

    Prakash, O., Talat, M., Hasan, S. H., Pandey, R. K.: Factorial design for the optimization of enzymatic detection of cadmium in aqueous solution using immobilized urease from vegetable waste. Bioresour Technol 99, 75657652 (2008).

    • Search Google Scholar
    • Export Citation
  • 33.

    Liu, H. L., Chiou, Y. R.: Optimal decolorization efficiency of Reactive Red 239 by UV/TiO photocatalytic process coupled with response surface methodology. Chem Eng J 112, 173179 (2005).

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 4 2
Jul 2020 8 1 0
Aug 2020 5 0 0
Sep 2020 3 0 0
Oct 2020 3 0 0
Nov 2020 4 0 0
Dec 2020 0 0 0