View More View Less
  • 1 Semmelweis University, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

The unicellular ciliate Tetrahymena is a complete organism, one of the most highly developed protozoans, which has specialized organelles performing each of the functions characteristic to the cells of higher ranked animals. It is also able to produce, store, and secrete hormones of higher ranked animals and also react to them. It produces lectins that can bind them and has functions, which are influenced by exogenous lectins. The review lists the observations on the relationship between lectins and Tetrahymena and try to construe them on the basis of the data, which are at our disposal. Considering the data, lectins can be used by Tetrahymena as materials for influencing conjugation, for stimulating hormone receptors, and by this, mimic the hormonal functions. Lectins can influence phagocytosis and movement of the cells as well as the cell division. As Tetrahymena can recognize both related and hostile cells by the help of lectins and surface sugars, it could be surmised a complex predator–prey system. This could determine the survival of the population as well as the nourishment conditions. When Tetrahymena is pathogenic, it can use lectins as virulence factors.

  • 1.

    Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T., Sharon, N.: What should be called a lectin? Nature 285, 66 (1980).

  • 2.

    Singh, H., Sarathi, S. P.: Insight of lectins – A review. Int J Sci Eng Res 3, 4 (2012).

  • 3.

    Dan, X., Liu, W., Ng, T. B.: Development and applications of lectins as biological tools in biomedical research. Med Res Rev 36, 221247 (2016).

  • 4.

    Sharon, N., Lis, H.: History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 14, 53R62R (2004).

  • 5.

    Endriga, M. A., Mojica, E.-R. E., Merca, F. E., Lacsamana, M. S., Deocaris, C. C.: Evaluation of some lectins as anti-protozoan agents. J Med Sci 5, 3134 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ip, W. K. E., Takahashi, K., Ezekowitz, R. A., Stuart, L. M.: Mannose-binding lectin and innate immunity. Immunol Rev 230, 921 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hébert, E.: Endogenous lectins as cell surface transducers. Biosci Rep 20, 213237 (2000).

  • 8.

    Kiran-Kumar, K., Lalith Prakash Chandra, K., Sumanthi, J., Sridhar Reddy, G., Chadra Shekar, P., Reddy, B. V. R.: Biological role of lectins: A review. J Orofac Sci 4, 2025 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Berg, J. M., Tymoczko, J. L., Stryer, L.: Biochemistry, 5th Edition, W.H. Freeman, New York, 2002.

  • 10.

    Zhang, S., Ling, Z., Wang, S., Nozawa, Y., Umeki, S.: Tetrahymena cell culture. Wiley Online Library (2010).

  • 11.

    Wheatley, D. N., Rasmussen, L., Tiedtke, A.: My favourite cell: Tetrahymena: A model for growth, cell cycle and nutritional studies, with biotechnological potential. Bioessays 16, 367372 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Csaba, G.: The hormonal system of the unicellualr Tetrahymena: A review with evolutionary aspects. Acta Microbiol Immunol Hung 59, 131156 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Christopher, G. K., Sundermann, C. A.: Isolation and partial characterization of the insulin binding sites of Tetrahymena pyriformis. Biochem Biophys Res Commun 212, 515523 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Christensen, S. T., Guerra, C. F., Awan, A., Wheatley, D. N., Satir, P.: Insulin receptor-like proteins in Tetrahymena thermophila ciliary membranes. Curr Biol 13, R50R52 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Csaba, G., Kovács, P.: Lectins in the unicellular Tetrahymena. I. Lectin detection with FITC-labeled anti-lectins. Acta Histochem 73, 5361 (1983).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kovács, P., Csaba, G.: Lectins in the unicellular Tetrahymena. II. Impact of nutrition and sugar treatment on anti-lectin binding. Acta Histochem 73, 181192 (1983).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kovács, P., Müller, W. E., Csaba, G.: A lectin-like molecule is discharged from mucocysts of Tetrahymena pyriformis in the presence of insulin. J Eukaryot Microbiol 44, 487491 (1997).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kovács, P., Müller, W. E., Csaba, G.: The effects of ceramide and its analogues on the secretion of the mucocyst content of Tetrahymena. Cell Mol Biol (Noisy-le-grand) 44, 985991 (1998).

    • Search Google Scholar
    • Export Citation
  • 19.

    Becker, B., Rüsing, M.: Structure of N-glycosidic carbohydrates of secretory proteins of Tetrahymena thermophila. J Eukaryot Microbiol 50, 235239 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kőhidai, L., Kovács, P., Csaba, G.: Cyclic changes of concanavalin-A binding sites in Tetrahymena cell membrane. Acta Morphol Hung 33, 117121 (1985).

    • Search Google Scholar
    • Export Citation
  • 21.

    Wolfe, J., Feng, S.: Concanavalin A receptor “tipping” in Tetrahymena and its relationship to cell adhesion during conjugation. Development 102, 699708 (1988).

    • Search Google Scholar
    • Export Citation
  • 22.

    Cheng, L. J., Hufnagel, L. A.: Ciliary polypeptides and glycoconjugates of wild-type and mutant Tetrahymena: Starved versus nonstarved. Dev Genet 13, 2633 (1992).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Leick, V., Bog-Hansen, T. C., Juhl, H. A.: Insulin/FGF-binding membrane glycoprotein from Tetrahymena. J Membr Biol 181, 4753 (2001).

  • 24.

    Kovács, P., Sundermann, C. A., Csaba, G.: Investigations of receptor-mediated phagocytosis by hormone-induced (imprinted) Tetrahymena pyriformis. Experientia 52, 769773 (1996).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kovács, P., Sundermann, C., Estridge, B. H., Csaba, G.: A confocal microscopic evaluation of the effects of insulin imprinting on the binding of Concanavalin A by Tetrahymena pyriformis. Cell Biol Int 19, 973978 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Dentler, W. L.: Identification of Tetrahymena ciliary surface proteins labeled with sulfosuccinimidyl 6-(biotinamido) hexanoate and Concanavalin A and fractionated with Triton X-114. J Protozool 39, 368378 (1992).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Kovács, P., Csaba, G.: Effect of inhibitors of glycoprotein synthesis (swainsonine, 1-deoxynojiromycin) on hormonal imprinting and lectin binding in Tetrahymena pyriformis. Acta Microbiol Hung 40, 351363 (1993).

    • Search Google Scholar
    • Export Citation
  • 28.

    Kovács, P., Csaba, G.: Effect of glycosylation inhibitors on the binding of insulin and lectins and on hormonal imprinting in Tetrahymena. Acta Physiol Hung 72, 135141 (1988).

    • Search Google Scholar
    • Export Citation
  • 29.

    Kovács, P., Csaba, G., Darvas, Z., Liszkay, G.: Effect of modification of membrane saccharides on hormonal imprinting in Tetrahymena. Acta Physiol Hung 69, 189195 (1987).

    • Search Google Scholar
    • Export Citation
  • 30.

    Kovács, P., Csaba, G., László, V.: Study of the imprinting and overlap of insulin and Concanavalin-A at the receptor level in a protozoan (Tetrahymena) model system. Acta Physiol Hung 64, 1923 (1984).

    • Search Google Scholar
    • Export Citation
  • 31.

    Csaba, G., Kovács, P.: Histamine-lectin and insulin-lectin binding site overlaps in Tetrahymena. Cell Mol Biol 28, 153158 (1982).

  • 32.

    Kovács, P., Darvas, Z., Csaba, G.: Investigation of histamine–antihistamine differentiation ability of Tetrahymena receptors, by means of lectins and antihistamine antibodies. Acta Biol Acad Sci Hung 32, 111117 (1981).

    • Search Google Scholar
    • Export Citation
  • 33.

    Csaba, G., Kovács, P.: Hormonal influence on lectin binding to Tetrahymena. Cell Mol Biol 28, 509512 (1982).

  • 34.

    Kovács, P.: Influence of environmental (culturing) conditions on the lectin-binding capacity of Tetrahymena. Acta Biol Hung 35, 8390 (1984).

    • Search Google Scholar
    • Export Citation
  • 35.

    Kőhidai, L., Kovács, P., Nozawa, Y., Csaba, G.: Effects of membrane fluidity changes on lectin binding in Tetrahymena pyriformis. Cell Mol Biol 32, 303308 (1986).

    • Search Google Scholar
    • Export Citation
  • 36.

    Kőhidai, L., Kovács, P., Nozawa, Y., Csaba, G.: Influence of phenothiazines and local anesthetics on lectin binding to Tetrahymena surface membrane. Cell Mol Biol 32, 7377 (1986).

    • Search Google Scholar
    • Export Citation
  • 37.

    Kovács, P., Karsa, J., Csaba, G.: Studies into secretions of Tetrahymena: Enzymes secreted into inorganic medium. Microbios 70, 5765 (1992).

    • Search Google Scholar
    • Export Citation
  • 38.

    Ferreira, A. M., López, J. A.: Insulin or insulin-like studies on unicellular organisms: A review. Braz Arch Biol Technol 47, 1678 (2004).

    • Search Google Scholar
    • Export Citation
  • 39.

    Csaba, G., Darvas, Z., László, V.: A functional study of concanavalin A–histamine binding site overlap in Tetrahymena phagocytosis test. Comp Biochem Physiol A 75, 457460 (1983).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gilboa-Garber, N., Sharabi, Y.: Increase of growth rate and phagocytic activity of Tetrahymena induced by Pseudomonas lectins. J Eukaryot Microbiol 27, 209211 (2007).

    • Search Google Scholar
    • Export Citation
  • 41.

    Sharabi, Y., Gilboa-Garber, N.: Interactions of pseudomonas aeruginosa hemagglutinins with Euglena gracilis, Chlamydomonas reinhardtii, and Tetrahymena pyriformis. J Protozool 27, 8086 (1980).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Csaba, G., Darvas, Z., László, V.: Effect of lectins on division of the unicellular Tetrahymena. Cell Biol Int Rep 7, 403 (1983).

  • 43.

    Ofer, L., Levkovitz, H., Loyter, A.: Conjugation in Tetrahymena pyriformis. The effect of polylysine, concanavalin A, and bivalent metals on the conjugation process. J Cell Biol 70, 287293 (1976).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Frisch, A., Levkovitz, H., Loyter, A.: Inhibition of conjugation in Tetrahymena pyriformis by concanavalin A. Exp Cell Res 106, 293301 (1977).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Frisch, A., Loyter, A.: Inhibition of conjugation in Tetrahymena pyriformis by ConA. Localization of ConA-binding sites. Exp Cell Res 110, 337346 (1978).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Wolfe, J., Pagliaro, L., Fortune, H.: Coordination of concanavalin-A-receptor distribution and surface differentiation in Tetrahymena. Differentiation 31, 19 (1986).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Csaba, G., Kovács, P.: Binding of lectins (Con-A, lens, helix, PHA) to binding sites induced in Tetrahymena by insulin and lectins. Acta Microbiol Hung 38, 2932 (1991).

    • Search Google Scholar
    • Export Citation
  • 48.

    Csaba, G., Pállinger, É.: Effect of concanavalin A (Con-A) on the hormone production of the unicellular Tetrahymena and the immune cells of the rat. A comparative study. Cell Bioichem Funct 26, 578581 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Kőhidai, L., Csaba, G.: Different and selective chemotactic responses of Tetrahymena pyriformis to two families of signal molecules: Lectins and peptide hormones. Acta Microbiol Immunol Hung 43, 8391 (1996).

    • Search Google Scholar
    • Export Citation
  • 50.

    Kőhidai, L., Bánky, C., Csaba, G.: Comparison of lectin induced chemotactic selection and chemical imprinting in Tetrahymena pyriformis. Acta Protozool 42, 9197 (2003).

    • Search Google Scholar
    • Export Citation
  • 51.

    Pagliaro, L., Wolfe, J.: Concanavalin A inhibits mating type recognition in Tetrahymena. Exp Cell Res 181, 574578 (1989).

  • 52.

    Richmond, J. E.: The effects of concanavalin A, cerulenin, hydroxyurea and tunicamycin on the incorporation of amino acids and glucosamine in Tetrahymena pyriformis. Comp Biochem Physiol B 64, 161165 (1979).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Pagliaro, L., Wolfe, J.: Concanavalin A binding induces association of possible mating-type receptors with the cytoskeleton in Tetrahymena. Exp Cell Res 168, 138152 (1987).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Scott, S. M., Hufnagel, L. A.: The effect of concanavalin A on egestion of food vacuoles in Tetrahymena. Exp Cell Res 144, 429441 (1983).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Leick, V., Iversen, C. G., Olesen, J. D., Bog-Hansen T. C. : Concanavalin A and the motile behaviour of the ciliate Tetrahymena. Eur J Protistol 39, 390393 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Leick, V., Bog-Hansen, T. C., Christensen, S. T., Kaufman, S. J.: Concanavalin A receptors and the chemosensory behaviour of Tetrahymena thermophila. EBO – Experimental Biology Online Annual 1996/97. Springer, Berlin, Heidelberg, 1996–1997, 7893.

    • Search Google Scholar
    • Export Citation
  • 57.

    Esko, J. D., Sharon, N.: Microbial lectins: Hemagglutinins, adhesins, and toxins. In Varki, A. et al. (eds): Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2009.

    • Search Google Scholar
    • Export Citation
  • 58.

    Sharon, N.: Bacterial lectins, cell–cell recognition and infectious disease. FEBS Lett 217, 145157 (1987).

  • 59.

    Paustian, T.: Through the Microscope, an Online Microbiology Textbook, 5th Edition, 2014.

  • 60.

    Stahl, P. D., Ezekowitz, R. A.: The mannose receptor is a pattern recognition receptor involved in host defence. Curr Opin Immunol 10, 5055 (1998).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Marques, M. R. F., Barracco, M. A.: Lectins, as non-self-recognition factors in crustaceans. Aquaculture 191, 2344 (2000).

  • 62.

    Vasta, G. R., Ahmed, H., Fink, N. E., Elola, M. T., Marsh, A. G., Snowden, A., Odom E. W. : Animal lectins as self/non-self recognition molecules. Biochemical and genetic approaches to understanding their biological roles and evolution. Ann N Y Acad Sci 15, 5573 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Roberts, E. C., Legrand, C., Steinke, M., Wootton, E. C.: Mechanisms underlying chemical interactions between predatory planktonic protists and their prey. J Plankton Res 33, 833841 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Venkataraman, C., Haack, B. J., Bondada, S., Abu Kwaik, Y.: Identification of a Gal/GalNac lectin in the protozoan Hartmannella vermiformis as a potential receptor for attachment and invasion by the Legionnaires disease bacterium. J Exp Med 186, 537547 (1997).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Roberts, E. C., Zubkov, M. V., Martin-Cerecada, M., Novarino, G., Wootton, E. C.: Cell surface lectin-binding glycoconjugates on marine planktonic protists. FEMS Microbiol Lett 265, 202207 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Allen, P. G., Dawidowitz, E. A.: Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol 145, 508513 (1990).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Ly, T. M., Müller, H. E.: Ingested Listeria monocytogenes survive and multply in protozoa. J Med Microbiol 33, 5154 (1990).

  • 68.

    Arnold, J. W., Koudelka, G. B.: The Trojan Horse of the microbiological arms race: Phage-encoded toxin as a defence against eukaryotic predators. Environ Microbiol 16, 454466 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Sharon, N., Pimenta Leibowitz, M., Chettri J. K. , Isakov, N., Zilberg, D.: Comparative study of infection with Tetrahymena of different ornamental fish species. J Comp Pathol 150, 316324 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Berk, S. G., Faulkner, G., Garduno, E., Joy, M. C., Ortiz-Jimenez, M. A., Garduno, R. A.: Packaging of live Legionella pneumophila into pellets by Tetrahymena spp. does not require bacterial replication and depends on a Dot/lcm-mediated survival mechanism. Appl Environ Microbiol 74, 21872199 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Koubar, M., Rodier, M. H., Garduno, R. A., Frere, J.: Passage through Tetrahymena tropicalis enhances the resistance to stress and the infectivity of Legionella pneumophila. FEMS Microbiol Lett 325, 1015 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Brandl, M. T., Rosenthal, B. M., Haxo, A. F., Berk, S. G.: Enhanced survival of Salmonella enterica in vesicles release by a soilborne Tetrahymena species. Appl Environ Microbiol 71, 15621569 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Hernlem, B. J., Ravva, S. V., Sarreal, C. Z.: Rapid detection of predation of Escherichia coli O157:H7 and sorting of bacterivorous Tetrahymena by flow cytometry. Front Cell Infect Microbiol 4, 57 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Jack, D. L., Turner, M. W.: Anti-microbial activities of mannose binding lectins. Biochem Soc Trans 31, 753757 (2003).

  • 75.

    Gilchrist, C. A., Petri, W. A.: Virulence factors of Entamoeba histolytica. Curr Opin Microbiol 2, 433437 (1999).

  • 76.

    Ralston, K. S., Petri, W. A.: The ways of a killer: How does Entamoeba histolytica elicit host cell death. Essays Biochem 51, 193210, (2011).

  • 77.

    Nowell, P. C.: Studies on normal and neoplastic lymphocytes. Immunol Rev 185, 220226 (2002).

  • 78.

    Singh, R. S., Walia, A. K.: Microbial lectins and their prospective mitogenic potential. Crit Rev Microbiol 40, 329347 (2014).

  • 79.

    Rawal, S., Majumdar, S., Vohra, H.: Activation of MAPK kinase pathway by Gal/GalNac adherence lectin of E. histolytica: Gateway to host response. Mol Cell Biochem 268, 93101 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Ashraf, M. T., Khan, R. H.: Mitogenic lectins. Med Sci Monit 9, RA265RA269 (2003).

  • 81.

    Singh, R. S., Bhari, R., Kaur, R.: Purification, characterization, and mitogenic potential of a mucin-specific mycelial lectin from Aspergillus sparsus. Appl Biochem Biotechnol 175, 19381947 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Kilpatrick, D. C.: Mechanism and assessment of lectin-mediated mitogenesis. Mol Biotechnol 11, 5565 (1999).

  • 83.

    McCurrach, P. M., Kilpatrick, D. C.: Datura lectin is both an anti-mitogen and a co-mitogen synergistically with phorbol ester. Scand J Immunol 27, 3134 (1988).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Ezekowitz, R. A., Stahl, P. D.: The structure and function of vertebrate mannose lectin-like proteins. J Cell Sci Suppl 9, 121133 (1988).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Csaba, G.: Biogenic amines at a low level of evolution: Production functions and regulation in the unicellular Tetrahymena. Acta Microbiol Immunol Hung 62, 93108 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Csaba, G.: Hormonal actions in the Protozoan stress. Acta Microbiol Immunol Hung 62, 331339 (2015).

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 4 3
Jul 2020 27 2 2
Aug 2020 7 0 0
Sep 2020 49 0 0
Oct 2020 35 0 0
Nov 2020 12 1 1
Dec 2020 0 0 0