Morphological transitions of wild-type and oxidative stress-tolerant Candida albicans strains were followed in the RPMI-FBS culture medium at pH values and CO2 levels characteristic for the anatomical niches inhabited by this opportunistic human pathogen fungus, including the oral cavity as well as the intestinal and vaginal lumens. Selected cultures were also supplemented with hemin modeling bleedings. Germination as well as elongation and branching of hyphae were monitored in the cultures using time-lapse video microscopy. Unexpectedly, branching time, which is defined as the time taken until the first branch of hypha emerges for the first time after germination, correlated well with alterations in the environmental conditions meanwhile no such correlations were found for germination time (time lasted until the appearance of the germination tube). Based on these observations, hypotheses were set up to estimate the significance of branching time in the pathogenesis of both superficial and systemic candidiases.
Rizzetto, L. , De Filippo, C. , Cavalieri, D. : Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. Eur J Immunol 44, 3166–3181 (2014).
Drell, T. , Lillsaar, T. , Tummeleht, L. , Simm, J. , Aaspõllu, A. , Väin, E. , Saarma, I. , Salumets, A. , Donders, G. G. , Metsis, M. : Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8, e54379 (2013).
Akpan, A. , Morgan, R. : Oral candidiasis. Postgrad Med J 78, 455–459 (2002).
Miranda, L. N. , van der Heijden, I. M. , Costa, S. F. , Sousa, A. P. , Sienra, R. A. , Gobara, S. , Santos, C. R. , Lobo, R. D. , Pessoa, V. P., Jr. , Levin, A. S. : Candida colonisation as a source for candidaemia. J Hosp Infect 72, 9–16 (2009).
Cassone, A. : Vulvovaginal Candida albicans infections: Pathogenesis, immunity and vaccine prospects. BJOG 122, 785–794 (2014).
Sudbery, P. E. : Growth of Candida albicans hyphae. Nat Rev Microbiol 9, 737–748 (2011).
Calderone, R. A. , Fonzi, W. A. : Virulence factors of Candida albicans. Trends Microbiol 9, 327–335 (2001).
Han, T. L. , Cannon, R. D. , Villas-Boas, S. G. : The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48, 747–763 (2011).
Lee, K. H. , Shin, W. S. , Kim, D. , Koh, C. M. : The presumptive identification of Candida albicans with germ tube induced by high temperature. Yonsei Med J 40, 420–424 (1999).
Feng, Q. , Summers, E. , Guo, B. , Fink, G. R. : Ras signalling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181, 6339–6346 (1999).
Pendrak, M. L , Roberts, D. D. : Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Med Mycol 45, 61–71 (2007).
Belcher, J. D. , Beckman, J. D. , Balla, G. , Balla, J. , Vercellotti, G. : Heme degradation and vascular injury. Antioxid Redox Signal 12, 233–248 (2010).
Casanova, M. , Cervera, A. M. , Gozalbo, D. , Martinez, J. P. : Hemin induces germ tube formation in Candida albicans. Infect Immun 65, 4360–4364 (1997).
Santos, R. , Buisson, N. , Knight, S. , Danci, A. , Camadro, J. M. , Lesuisse, E. : Haemin uptake and use as an iron source by Candida albicans: Role of CaHMX1-encoded haem oxygenase. Microbiology 149, 579–588 (2003).
Persi, M. A. , Burnham, J. C. , Duhring, J. L. : Effects of carbon dioxide and pH on adhesion of Candida albicans to vaginal epithelial cells. Infect Immun 50, 82–90 (1985).
Bensen, E. S. , Martin, S. J. , Li, M. , Berman, J. , Davis, D. : A transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 54, 1335–1351 (2004).
Lu, Y. , Su, C. , Solis, N. V. , Filler, S. G. , Liu, H. : Synergistic regulation of hyphal elongation by hypoxia, CO2, and nutrient conditions controls the virulence of Candida albicans. Cell Host Micbore 14, 499–509 (2013).
Tripathi, G. , Wiltshire, C. , Macaskill, S. , Tournu, H. , Budge, S. , Brown, A. J. P. : Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21, 5448–5456 (2002).
De Bernardis, F. , Muhlschlegel, F. A. , Cassone, A. , Fonzi, W. A. : The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun 66, 3317–3325 (1998).
Aframian, D. J. , Davidowitz, T. , Benoliel, R. : The distribution of oral mucosal pH values in healthy saliva secretors. Oral Dis 12, 420–423 (2006).
Fallingborg, J. : Intraluminal pH of the gastrointestinal tract. Dan Med Bull 46, 183–196 (1999).
DeSesso, J. M. , Jacobson, C. F. : Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats. Food Chem Toxicol 39, 209–228 (2001).
Davis, D. : Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44, 1–7 (2003).
White, S. J. , Rosenbach, A. , Lephart, P. , Nguyen, D. , Benjamin, A. , Tzipori, S. , Whiteway, M. , Mecsas, J. , Kumamoto, C. A. : Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3, e184 (2007).
Scaldaferri, F. , Nardone, O. , Lopetuso, L. R. , Petito, V. , Bibbò, S. , Laterza, L. , Gerardi, V. , Bruno, G. , Scoleri, I. , Diroma, A. , Sgambato, A., Gaetani, E., Cammarota, G., Gasbarrini, A.: Intestinal gas production and gastrointestinal symptoms: From pathogenesis to clinical implication. Eur Rev Med Pharmacol Sci 17, 2–10 (2013).
Wagner, G. , Ottesen, B. : Vaginal physiology during menstruation. Ann Intern Med 96, 921–923 (1982).
Bullen, J. J. : The significance of iron in infection. Rev Infect Dis 3, 1127–1138 (1981).
Tanaka, W. T. , Nakao, N. , Mikami, T. , Matsumoto, T. : Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form. Biochem Biophys Res Commun 232, 350–353 (1997).
Ramanan, N. , Wang, Y. : A high-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064 (2000).
Knight, S. A. , Vilaire, G. , Lesuisse, E. , Dancis, A. : Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73, 5482–5492 (2005).
Almeida, R. S. , Brunke, S. , Albrecht, A. , Thewes, S. , Laue, M. , Edwards, J. E. , Filler, S. G. , Hube, B. : The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4, e1000217 (2008).
Chen, C. , Pande, K. , French, S. D. , Tuch, B. B. , Noble, S. M. : An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10, 118–135 (2011).
Kuznets, G. , Vigonsky, E. , Weissman, Z. , Lalli, D. , Gildor, T. , Kauffman, S. J. , Turano, P. , Becker, J. , Lewinson, O. , Kornitzer, D. : A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin. PLoS Pathog 10, e1004407 (2014).
Pendrak, M. L. , Yan, S. S. , Roberts, D. D. : Sensing the host environment: Recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch Biochem Biophys 426, 148–156 (2004).
Fekete, A. , Pócsi, I. , Emri, T. , Gyetvai, A. , Gazdag, Z. , Pesti, M. , Karányi, Z. , Majoros, L. , Gergely, L. , Pócsi, I. : Physiological and morphological characterization of tert-butylhydroperoxide tolerant Candida albicans mutants. J Basic Microbiol 48, 480–487 (2008).
Fekete, A. , Emri, T. , Gyetvai, A. , Gazdag, Z. , Pesti, M. , Varga, Z. , Balla, J. , Cserháti, C. , Emődy, L. , Gergely, L. , Pócsi, I. : Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. FEMS Yeast Res 7, 834–847 (2007).
Jakab, Á. , Emri, T. , Sipos, L. , Kiss, Á. , Kovács, R. , Dombrádi, V. , Kemény-Beke, Á. , Balla, J. , Majoros, L. , Pócsi, I. : Betamethasone augments the antifungal effect of menadione – Towards a novel anti-Candida albicans combination therapy. J Basic Microbiol 55, 973–981 (2015).
Kovács, R. , Gesztelyi, R. , Berényi, R. , Domán, M. , Kardos, G. , Juhász, B. , Majoros, L. : Killing rates exerted by caspofungin in 50 percent serum and its correlation with in vivo efficacy in a neutropenic murine model against C. krusei and C. inconspicua. J Med Microbiol 63, 186–194 (2013).
Lo, H. J. , Kohler, J. R. , DiDomenico, B. , Loebenberg, D. , Cacciapuoti, A. , Fink, G. R. : Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949 (1997).
Nagy, G. , Hennig, G. W. , Petrenyi, K. , Kovacs, L. , Pocsi, I. , Dombradi, V. , Banfalvi, G. : Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains. Appl Microbiol Biotechnol 98, 5185–5194 (2014).
Veses, V. , Gow, N. A. : Vacuolar dynamics during the morphogenetic transition in Candida albicans. FEMS Yeast Res 8, 1339–1348 (2008).
Welch, B. L. : The generalization of “Student’s” problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
Holm, S. : A simple sequentially rejective multiple test procedure. Scand J Stat 6, 65–70 (1979).
R Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2014. Retrieved from http://www.R-project.org/
Barelle, C. J. , Bohula, E. A. , Kron, S. J. , Wessels, D. , Soll, D. R. , Schäfer, A. , Brown, A. J. , Gow, N. A. : Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell 2, 398–410 (2003).
Jackson, A. P. , Gamble, J. A. , Yeomans, T. , Moran, G. P. , Saunders, D. , Harris, D. , Aslett, M. , Barrell, J. F. , Butler, G. , Citiulo, F. , Coleman, D. C. , de Groot, P. W. , Goodwin, T. J. , Quail, M. A. , McQuillan, J. , Munro, C. A. , Pain, A. , Poulter, R. T. , Rajandream, M. A. , Renauld, H. , Spiering, M. J. , Tivey, A. , Gow, N. A., Barrell, B., Sullivan, D. J., Berriman, M.: Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res 19, 2231–2244 (2009).
Mavor, A. L. , Thewes, S. , Hube, B. : Systemic fungal infections caused by Candida species: Epidemiology, infection process and virulence attributes. Curr Drug Targets 6, 863–874 (2005).
Hausauer, D. L. , Gerami-Nejad, M. , Kistler-Anderson, C. , Gale, C. A. : Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot Cell 4, 1273–1286 (2005).
Palmer, G. E. , Kelly, M. N. , Sturtevant, J. E. : The Candida albicans vacuole is required for differentiation and efficient macrophage killing. Eukaryot Cell 4, 1677–1686 (2005).
Webb, B. C. , Thomas, C. J. , Willcox, M. D. , Harty, D. W. , Knox, K. W. : Candida-associated denture stomatitis. Aetiology and management: A review. Part 3. Treatment of oral candidosis. Aust Dent J 43, 244–249 (1998).
Pope, L. M. , Cole, G. T. : Comparative studies of gastrointestinal colonization and systemic spread by Candida albicans and nonlethal yeast in the infant mouse. Scan Electron Microsc 4, 1667–1676 (1982).
Lionakis, M. S. , Lim, J. K. , Lee, C. C. , Murphy, P. M. : Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun 3, 180–199 (2011).
Mayer, F. L. , Wilson, D. , Hube, B. : Candida albicans pathogenicity mechanisms. Virulence 4, 119–128 (2013).
Cleary, I. A. , Reinhard, S. M. , Lazzell, A. L. , Monteagudo, C. , Thomas, D. P. , Lopez-Ribot, J. L. , Saville, S. P. : Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. FEMS Yeast Res 16, fow011 (2016).
Sudbery, P. , Gow, N. , Berman, J. : The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317–324 (2004).
Shen, J. , Cowen, L. E. , Griffin, A. M. , Chan, L. , Köhler, J. R. : The Candida albicans pescadillo homolog is required for normal hypha-to-yeast morphogenesis and yeast proliferation. Proc Natl Acad Sci U S A 105, 20918–20923 (2008).
Barelle, C. J. , Richard, M. L. , Gaillardin, C. , Gow, N. A. , Brown, A. J. : Candida albicans VAC8 is required for vacuolar inheritance and normal hyphal branching. Eukaryot Cell 5, 359–367 (2006).
Ergun, S. , Cekici, A. , Topcuoglu, N. , Migliari, D. A. , Külekçi, G. , Tanyeri, H. , Isik, G. : Oral status and Candida colonization in patients with Sjögren’s Syndrome. Med Oral Patol Oral Cir Bucal 15, e310–e315 (2010).
Oyetola, E. O. , Owotade, F. J. , Agbelusi, G. A. , Fatusi, O. A. , Sanusi, A. A. : Oral findings in chronic kidney disease: Implications for management in developing countries. BMC Oral Health 15, 24 (2015).
Sawicki, K. T. , Chang, H. C. , Ardehali, H. : Role of heme in cardiovascular physiology and disease. J Am Heart Assoc 4, e001138 (2015).
Cannon, R. D. , Holmes, A. R. , Mason, A. B. , Monk, B. C. : Oral Candida: Clearance, colonization, or candidiasis? J Dent Res 74, 1152–1161 (1995).
Mech, F. , Wilson, D. , Lehnert, T. , Hube, B. , Thilo Figge, M. : Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach. Cytometry A 85, 126–139 (2014).
Saville, S. P. , Lazzell, A. L. , Monteagudo, C. , Lopez-Ribot, J. L. : Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2, 1053–1060 (2003).
Mathieson, R. , Dutta, S. K. : Candida esophagitis. Dig Dis Sci 28, 365–370 (1983).
Zwolinska-Wcisło, M. , Budak, A. , Bogdał, J. , Trojanowska, D. , Stachura, J. : Fungal colonization of gastric mucosa and its clinical relevance. Med Sci Monit 7, 982–988 (2001).
Sargent, J. , O’Marcaigh, A. , Smith, O. , Butler, K. , Gavin, P. , O’sullivan, M. : Candida albicans associated necrotizing vasculitis producing life-threatening gastrointestinal hemorrhage. Hum Pathol 41, 602–604 (2010).
Stichternoth, C. , Fraund, A. , Setiadi, E. , Giasson, L. , Vecchiarelli, A. , Ernst, J. F. : Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot Cell 10, 502–511 (2011).
MacLaughlin, D. T. , Santoro, N. F. , Bauer, H. H. , Lawrence, D. , Richardson, G. S. : Two-dimensional gel electrophoresis of endometrial protein in human uterine fluids: Qualitative and quantitative analysis. Biol Reprod 34, 579–585 (1986).
Bocheńska, O. , Rąpała-Kozik, M. , Wolak, N. , Braś, G. , Kozik, A. , Dubin, A. , Aoki, W., Ueda, M., Mak, P.: Secreted aspartic peptidases of Candida albicans liberate bactericidal hemocidins from human hemoglobin. Peptides 48, 49–58 (2013).
Weissman, Z. , Kornitzer, D. : A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 4, 1209–1220 (2004).
Crawford, A. , Wilson, D. : Essential metals at the host-pathogen interface: Nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res 15, fov071 (2015).
Jacobsen, I. D. , Wilson, D. , Wächtler, B. , Brunke, S. , Naglik, J. R. , Hube, B. : Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10, 85–93 (2012).