View More View Less
  • 1 Semmelweis University, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  • 1.

    Cooper, E. L.: Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7, 5578 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bayne, C. J.: Origins and evolutionary relationships between the innate and adaptive arms of immune systems. Integr Comp Biol 43, 293299 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Flajnik, M. F., Kasahara, M.: Origin and evolution of the adaptive immune system: Genetic events and selective pressures. Nat Rev Genet 11, 4759 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Forsdyke, D. R., Madill, C. A., Smith, S. D.: Immunity as a function of the unicellular state: Implications of emerging genomic data. Trends Immunol 23, 575579 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Boehm, T., Swann, J. B.: Origin and evolution of adaptive immunity. Annu Rev Anim Biosci 2, 259283 (2014).

  • 6.

    Rimer, J., Cohen, I. R., Friedman, N.: Do all creatures possess an acquired immune system of some sort? Bioessays 36, 273281 (2014).

  • 7.

    Cooper, E. L., Rinkovich, B., Uhlenbruck, G., Valembois, P.: Invertebrate immunity: Another viewpoint. Scand J Immunol 35, 247268 (1992).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Dzik, J. M.: The ancestry and cumulative evolution of immune reactions. Acta Biochim Pol 57, 443466 (2010).

  • 9.

    Janeway, C. A., Travers, P., Walport, M., Shlomchik, M. J.: Immunobiology: The Immune System in Health and Disease, 5th Edition. Garland Science, New York, 2001.

    • Search Google Scholar
    • Export Citation
  • 10.

    Boehm, T.: Quality control in self/nonself discrimination. Cell 125, 845858 (2006).

  • 11.

    Cooper, E. L.: Comparative immunology. Integr Comp Biol 43, 278280 (2003).

  • 12.

    Danilova, N.: The evolution of immune mechanisms. J Exp Zoolog B Mol Dev Evol 306, 496520 (2006).

  • 13.

    Azzolina, L. S., DeMuri, C., Prati, G., Robotti, M.: Review/Rassegna: Phylogenesis of immuno-competent cells. Boll Zool 52, 167187 (1985).

  • 14.

    Ray, D. L.: Agglutination of bacteria: A feeding method in the soil by amoeba Hartmanella sp. J Exp Zool 118, 443465 (1951).

  • 15.

    Mast, S. O., Hahnert, W. F.: Feeding, digestion and starvation in Amoeba proteus (Leidy). Physiol Zool 8, 255272 (1935).

  • 16.

    Goldstein, L.: Nucleo-cytoplasmic incompatibility in free-living amoeba. Transplant Proc 2, 191193 (1970).

  • 17.

    Hirshon, J. B.: The response of Paramecium bursaria to potential endocellular symbionts. Biol Bull 136, 3342 (1969).

  • 18.

    Tartar, V.: Transplantation in protozoa. Transplant Proc 2, 183190 (1970).

  • 19.

    Zhang, X., Soldati, T.: Of Amoebae and men: Extracellular DNA traps as an ancient cell-intrinsuc defense mechanism. Front Immunol 8, 269 (2016).

    • Search Google Scholar
    • Export Citation
  • 20.

    Cosson, P., Soldati, T.: Eat, kill or die. Curr Opin Microbiol 11, 271276 (2008).

  • 21.

    Wyroba, E.: Beta-adrenergic stimulation of phagocytosis in the unicellular eukaryote Paramecium aurelia. Cell Biol Int Rep 13, 667678 (1989).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Schiess, N., Csaba, G., Kőhidai, L.: Chemotactic selection with insulin, di-iodotyrosine and histamine alters the phagocytotic responsiveness of Tetrahymena. Comp Biochem Physiol C Toxicol Pharmacol 128, 521530 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Csaba, G., Lantos, T.: Effect of cyclic AMP and theophylline on phagocytotic activity of Tetrahymena pyriformis. Experientia 15, 321322 (1976).

  • 24.

    Csaba, G.: Hormonl imprinting: Phylogeny, ontogeny, diseases and possible role in present-day human evolution. Cell Biochem Funct 26, 110 (2008).

  • 25.

    Quinones-Maldonado, V., Renaud, F. L.: Effect of biogenic amines on phagocytosis in Tetrahymena thermophila. J Protozool 34, 435438 (1987).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Csaba, G., Darvas, Z.: Insulin antagonizes the phagocytosis stimulating action of histamine in Tetrahymena. Biosci Rep 12, 123127 (1992).

  • 27.

    Kőhidai, L., Lovas, B., Csaba, G.: Effect of adrenocorticotrophic hormone (ACTH) and insulin on the phagocytic capacity of Tetrahymena. Zoolog Sci 12, 277281 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kovács, P., Sundermann, C. A., Csaba, G.: Investigations on receptor-mediated phagoctosis by hormone-induced (imprinted) Tetrahymena pyriformis. Experientia 52, 769773 (1996).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Melendez, A. J., Tay, H. K.: Phagocytosis: A repertoire of receptors and Ca2+ as a key second messenger. Biosci Rep 28, 287298 (2008).

  • 30.

    Renaud, F. L., Colon, I., Lebron, J., Ortiz, N., Rodriguez, F., Cadilla, C.: A novel opioid mechanism seems to modulate phagocytosis in Tetrahymena. J Eukaryot Microbiol 42, 205207 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Chiesa, R., Silva, W. I., Renaud, F. L.: Pharmacological characterization of an opioid receptor in the ciliate Tetrahymena. J Eukaryot Microbiol 40, 800804 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Rodriguez, E., Lazaro, M. I., Renaud, F. L., Marino, M.: Opioid activity of β-endorphin-like proteins from Tetrahymena. J Eukaryot Microbiol 51, 6065 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hanzel, T. E., Rucker, W. B.: Trial and error learning in Paramecium: A replication. Behav Biol 7, 873880 (1972).

  • 34.

    Hinkle, D. J., Wood, D. C.: Is tube-escape learning by protozoa associative learning? Behav Neurosci 108, 9499 (1994).

  • 35.

    Kunita, I., Kuroda, S., Ohki, K., Nakagaki, T.: Attempts to retreat from a dead-ended long capillary by backward swimming in Paramecium. Front Microbiol 5, 270 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Armus, H. L., Montgomery, A. R., Gurney, R. L.: Discrimination learning and extinction in paramecia (P. caudatum). Psychol Rep 98, 705711 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hennessey, T. M., Rucker, W. B., McDiarmid, C. G.: Classical conditioning in paramecia. Anim Learn Behav 7, 417423 (1979).

  • 38.

    Fernando, C. T., Liekens, A. M. L., Bingle, L. E. H., Beck, C., Lenser, T., Stekel, D. J., Rowe, J. E.: Molecular circuits for associative learning in single-celled organisms. J R Soc Interface 6, 463469 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Applewhite, P. B., Gardner, F., Foley, D., Clandenin, M.: Failure to condition Tetrahymena. Scand J Psychol 12, 6567 (2008).

  • 40.

    Boisseau, R. P., Vogel, D., Dussutour, A.: Habituation in non-neural organisms: Evidence from slime moulds. Proc R Soc B 283, 20160446 (2016).

  • 41.

    Bonner, J. T.: Brainless behavior: A myxomycete chooses a balanced diet. Proc Natl Acad Sci U S A 107, 52675268 (2010).

  • 42.

    Dussutour, A., Latty, T., Beekman, M., Simpson, S. J.: Amoeboid organism solves complex nutritional challenges. Proc Natl Acad Sci U S A 107, 46074611 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Reid, C. R., Latty, T., Dussutour, A., Beekman, M.: Slime mold uses an external spatial “memory” to navigate in complex environments. Proc Natl Acad Sci U S A 109, 1749017494 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Pershin, Z. V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys Rev E 80, 021926 (2009).

  • 45.

    Kunita, I., Yamaguchi, T., Tero, A., Akiyama, M., Kuroda, S., Nakagaki, T.: A ciliate memorizes the geometry of a swimming arena. J R Soc Interface 13, 20160155 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Leick, V., Koppelhus, U., Rosenberg, J.: Cilia-mediated oriented chemokinesis in Tetrahymena thermophila. J Eukaryot Microbiol 41, 546553 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Skoge, M., Yue, H., Erickstad, M., Bae, A., Levine, H., Groisman, A., Loomis, W. F., Rappel, W. J.: Cellular memory in eukaryotic chemotaxis. Proc Natl Acad Sci U S A 111, 1444814453 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    LeRoith, D., Liotta, A. S., Roth, J., Shiloach, J., Lewis, M. E., Pert, C. B., Krieger, D. T.: Corticotropin and β-endorphin-like materials are native to unicellular organisms. Proc Natl Acad Sci U S A 79, 20862090 (1982).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Berelowitz, M., LeRoith, D., von Schenk, H., Newgard, C., Szabo, M., Frohman, L. A., Shiloach, J., Roth, J.: Somatostatin-like immunoactivity and biological activity is present in Tetrahymena pyriformis, a ciliated protozoan. Endocrinology 110, 19391944 (1982).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Schwabe, C., LeRoith, D., Thompson, R. P., Shiloach, C., Roth, J.: Relaxin extracted from protozoa (Tetrahymena pyriformis). Molecular and immunological properties. Biol Chem 10, 27782781 (1983).

    • Search Google Scholar
    • Export Citation
  • 51.

    Deftos, L. J., LeRoith, D., Shiloach, J., Roth, J.: Salmon calcitonin-like immunoactivity in extracts of Tetrahymena pyriformis. Horm Metab Res 17, 8285 (1985).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    LeRoith, D., Shiloach, J., Heffron, R., Rubinowitz, C., Tanenbaum, R., Roth, J.: Insulin-related material in microbes: Similarities and differences from mammalian insulins. Can J Biochem Cell Biol 63, 839849 (1985).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    DePablo, F., Lesniak, M. A., Hernandez, E. R., LeRoith, D., Shiloach, J., Roth, J.: Extracts of protozoa contain materials that react specifically in the immunoassay for guinea pig insulin. Horm Metab Res 18, 8287 (1986).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Csaba, G., Lantos, T.: Effect of hormones on protozoa. Cytobiologie 7, 361365 (1973).

  • 55.

    Csaba, G., Lantos, T.: Specificity of hormone receptors in Tetrahymena. Cytobiologie 11, 4449 (1975).

  • 56.

    Csaba, G., Lantos, T.: Effect of insulin on the glucose uptake of protozoa. Experientia 31, 10971098 (1975).

  • 57.

    Csaba, G.: The hormonal system of the unicellular Tetrahymena? A review with evolutionary aspects. Acta Microbiol Immunol Hung 59, 131156 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Csaba, G.: Insulin at a unicellular eukaryote level. Cell Biol Int 37, 267275 (2013).

  • 59.

    Csaba, G.: Biogenic amines at a low level of evolution: Production, functions and regulation in the unicellular Tetrahymena. Acta Microbiol Immunol Hung 62, 93108 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Christopher, G. K., Sundermann, C. A.: Isolation and partial characterization of the insulin binding sites of Tetrahymena pyriformis. Biochem Biophys Res Commun 212, 515523 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Christopher, G. K., Sundermann, C. A.: Conventional and confocal microscopic studies of insulin receptor induction in Tetrahymena pyriformis. Exp Cell Res 201, 477484 (1992).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Christensen, S. T., Guerra, C. F., Awan, A., Wheatley, D. N., Satir, P.: Insulin receptor-like proteins in Tetrahymena thermophila ciliary membranes. Curr Biol 13, R50R52 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Csaba, G., Sudár, F., Nagy, S. U., Dobozy, O.: Localization of hormone receptors in Tetrahymena. Protoplasma 91, 179189 (1977).

  • 64.

    Kovács, P., Csaba, G.: Effect of insulin on the incorporation of 3H-inositol phospholipids (PI, PIP, PIP2) and glycosyl-phosphatidylinositols (GPIs) of Tetrahymena pyriformis. Biosci Rep 14, 215219 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Kőhidai, L., Barsony, J., Roth, J., Marx, S. J.: Rapid effects of insulin on cyclic GMP location in an intact prozozoan. Experientia 48, 476481 (1992).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Csaba, G., Nagy, S. U., Lantos, T.: Are biogenic amines on Tetrahymena through a cyclic AMP mechanism? Acta Biol Med Ger 35, 259261 (1976).

    • Search Google Scholar
    • Export Citation
  • 67.

    Csaba, G., Lantos, T.: Effect of cyclic AMP and theophylline on phagocytotic activity of Tetrahymena pyriformis. Experientia 32, 321322 (1976).

  • 68.

    Kőhidai, L., Csaba, G., László, V.: Persistence of receptor “memory” induced in Tetrahymena by insulin imprinting. Acta Microbiol Hung 37, 269275 (1990).

    • Search Google Scholar
    • Export Citation
  • 69.

    Csaba, G., Kovács, P., László, V.: Cell-to-cell transmission of hormonal imprinting persists long in Tetrahymena. Acta Microbiol Hung 37, 277280 (1990).

    • Search Google Scholar
    • Export Citation
  • 70.

    Kőhidai, L., Lajkó, E., Pállinger, É., Csaba, G.: Verification of epigenetic inheritance in a unicellular model system: Multigenerational effects of hormonal imprinting. Cell Biol Int 36, 951959 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Csaba, G.: Hormonal imprinting in the unicellular Tetrahymena: The proto-model of epigenetics. Acta Microbiol Immunol Hung 59, 291310 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Csaba, G., Németh, G., Vargha, P.: Influence of hormone concentration and time factor on development of receptor memory in a unicellular (Tetrahymena) model system. Comp Biochem Physiol B 73, 357360 (1982).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Ginsburg, S., Jablonka, E.: Epigenetic learning in non-neural organisms. J Biosci 34, 633646 (2009).

  • 74.

    Nistiar, F., Rácz, O., Brenisin, M.: Can imprinting play a role in the response of Tetrahymena pyriformis to toxic substance exposure? Environ Epigenet 2, dvw010 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Csaba, G., Kovács, P., Tóthfalusi, L., Pállinger, É.: Effects of extremely low concentrations of hormones on the insulin binding of Tetrahymena. Cell Biol Int 30, 957962 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Csaba, G., Németh, G., Vargha, P.: Experimental observations on the mechanism of hormonal imprinting: Influence of actinomycin D, methylamine and colchicine on receptor memory in a unicellular model system. Endokrinologie 80, 341346 (1982).

    • Search Google Scholar
    • Export Citation
  • 77.

    Csaba, G., Németh, G., Vargha, P.: Receptor ‘memory’ in Tetrahymena: Does it satisfy the general criteria of memory? An experimental study on induction and extinction by retroactive interference in a unicellular organism. Exp Cell Biol 52, 320325 (1984).

    • Search Google Scholar
    • Export Citation
  • 78.

    Lajkó, E., Pállinger, É., Csaba, G.: Investigations on the triiodothronine (T3)-specificity of thyrotropic (TSH) and gonadotropic (HCG) hormone in the unicellular Tetrahymena. Acta Microbiol Immunol Hung 58, 8591 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Shemarova, I. V., Selivanova, G. V., Vlasova, T. D.: The influence of epidermal growth factor and insulin on proliferation and DNA synthesis in ciliates Tetrahymena pyriformis. Tsitologia 44, 10971103 (2002).

    • Search Google Scholar
    • Export Citation
  • 80.

    Hegyesi, H., Csaba, G.: Time- and concentration-dependence of the growth-promoting activity of insulin and histamine in Tetrahymena. Application of the MTT-method for the determination of cell proliferation in a protozoan model. Cell Biol Int 21, 289293 (1997).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Fülöp, A. K., Csaba, G.: Insulin pretreatment (imprinting) produces elevated capacity in the insulin binding of Tetrahymena. Different binding by the cilia of the body and oral field. Biosci Rep 14, 301308 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Lajkó, E., Pállinger, É., Csaba, G.: Effect of glucose on the insulin production and insulin binding of Tetrahymena. Acta Microbiol Immunol Hung 59, 461468 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Csaba, G., Kovács, P.: Effect of hormones and hormone-induced imprinting on the serotonin level in Tetrahymena: Immunocytochemical studies. Microbios 80, 155163 (1994).

    • Search Google Scholar
    • Export Citation
  • 84.

    Mugnaini, D., Ricci, N., Banchetti, R., Kovács, P.: Insulin treatment affects the behaviour of Tetrahymena pyriformis and T. malaccensis. Cytobios 81, 8795 (1995).

    • Search Google Scholar
    • Export Citation
  • 85.

    Csaba, G.: The biological basis and clinical significance of hormonal imprinting, an epigenetic process. Clin Epienetics 2, 187196 (2011).

  • 86.

    Kőhidai, L., Thomka, M., Csaba, G.: Age of the cell culture: A factor influencing hormonal imprinting of Tetrahymena. Acta Microbiol Hung 33, 295300 (1986).

    • Search Google Scholar
    • Export Citation
  • 87.

    Csaba, G., Tekes, K.: Is the brain hormonally imprintable? Brain Dev 27, 465471 (2005).

  • 88.

    Hashemi, F., Tekes, K., Laufer, R., Szegi, P., Tóthfalusi, L., Csaba, G.: Effect of a single neonatal oxytocin treatment (hormonal imprinting) on the biogenic amine level of the adult rat brain: Could oxytocin-induced labor cause pervasive developmental diseases? Reprod Sci 20, 12551263 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Csaba, G.: Immunoendocrinology: Faulty hormonal imprinting in the immune system. Acta Microbiol Immunol Hung 61, 89106 (2014).

  • 90.

    Koch, A. S., Fehér, G., Lukovits, I.: A simple model of dynamic receptor pattern generation. Biol Cybern 32, 125138 (1979).

  • 91.

    Koch, A. S., Nienhaus, R., Lautsch, M., Lukovits, I.: An advanced version of the dynamic receptor pattern generation model: The flux model. Biol Cybern 39, 105109 (1981).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Koch, A. S., Nienhaus, R., Lautsch, M.: Metastable equilibrium with random local fluctuations: Simulations of dynamic receptor pattern generation in a fluid mosaic membrane. Biol Cybern 44, 121128 (1982).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Csaba, G., Darvas, Z.: Hormone evolution studies: Multiplication promoting and imprinting (“memory”) effects of various amino acids on Tetrahymena. Biosystems 20, 225229 (1987).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Lenhoff, H. M., Heagy, W., Danner, J.: A view of evolution of chemoreceptors based on structural research with Cnidarians. In Mackie, G. O. (ed): Coelenterate Ecology and Behavior. Springer Science+Business Media, New York, 1976, p. 571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 95.

    Sanchez-Ramon, S., Faure, F.: Through the immune looking glass: A model for brain memory strategies. Front Cell Neurosci 10, 17 (2016).

  • 96.

    Guan, J. S., Xie, H., Ding, X.: The role of epigenetic regulation in learning and memory. Exp Neurol 268, 3036 (2015).

  • 97.

    Jablonka, E., Lamb, M.: The changing concept of epigenetics. Ann N Y Acad Sci 981, 8296 (2002).

  • 98.

    Csaba, G., Kovács, P.: Impact of 5-azacytidine on insulin binding and insulin induced receptor formation in Tetrahymena. Biochem Biophys Res Commun 168, 709713 (1980).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Töpfer, E., Boraschi, D., Italiani, P.: Innate immune memory: The latest frontier in adjuvanticity. J Immunol Res 2015, 478408 (2015).

  • 100.

    Netea, M. G., Joosten, L. A., Latz, E., Mills, K. H., Natoli, G., Stunnenberg, H. G., O’Neill, L. A., Xavier, R. J.: Trained immunity? A program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Suelvews, M., Carrio, E., Nunez-Alvarez, Y., Peinado, M. A.: DNA methylation dynamics in cellular commitment and differentiation. Brief Funct Genomics 15, 443453 (2016)

    • Search Google Scholar
    • Export Citation
  • 102.

    Logie, C., Stunnenberg, H. G.: Epigenetic memory: A macrophage perspective. Semin Immunol 28, 359367 (2016).

  • 103.

    Paschos, K., Allday, M. J.: Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 18, 439447 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Niller, H. H., Banati, F., Nagy, K., Buzas, K., Minarovits, J.: Update on microbe-induced epigenetic changes: Bacterial effectors and viral oncoproteins as epigenetic dysregulators. Future Virol 8, 11111126 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    D’Urso, A., Brickner, J. H.: Mechanisms of epigenetic memory. Trends Genet 30, 230236 (2014).

  • 106.

    Lachmann, M., Jablonka, E.: The inheritance of phenotypes: An adapation to fluctuating environments. J Theor Biol 181, 19 (1996).

  • 107.

    Jablonka, E., Raz, G.: Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84, 131176 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Shea, N., Pen, I., Uller, T.: Three epigenetic information channels and their different roles in evolution. J Evol Biol 24, 11781187 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Csaba, G., Németh, G., Juvancz, I., Vargha, P.: Involvement of selection and amplification mechanisms in hormone receptor development in a unicellular model system. Biosystems 15, 5963 (1982).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Cooper, E. L.: From Darwin and Metchnikoff to Burnet and beyond. Contrib Microbiol 15, 111 (2008).

  • 111.

    Sebé-Pedros, A., Pena, M. I., Calella-Gutiérrez, S., Antó, M., Gabaldon, T., Ruiz-Trillo, I., Sabido, E.: High-throughput proteomics reveals the unicellular roots of animal phosphosignaling and cell differentiation. Dev Cell 39, 186197 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Csaba, G., Kovács, P., Pállinger, É.: How does the unicellular Tetrahymena utilise the hormones that it produces? Paying a visit to the realm of atto- and zeptomolar concentrations. Cell Tissue Res 327, 199203 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Csaba, G.: Hormonal imprinting: Its role during the evolution and development of hormones and receptors. Cell Biol Int 24, 407414 (2000).

  • 114.

    Day, L. M., Bentley, M.: A note on learning in Paramecium. J Anim Behav 1, 6773 (1911).

  • 115.

    Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys Rev Lett 100, 018101 (2008).

  • 116.

    Criscitiello, M. F., de Figueiredo, P.: Fifty shades of immune defense. PLoS Pathog 9, e1003110 (2013).

  • 117.

    Csaba, G., Darvas, Z., László, V., Vargha, P.: Influence of prolonged life span on receptor ‘memory’ in a unicellular organism, Tetrahymena. Exp Cell Biol 52, 211216 (1984).

    • Search Google Scholar
    • Export Citation
  • 118.

    Csaba, G.: The unicellular Tetrahymena as a model cell for receptor research. Int Rev Cytol 95, 327377 (1985).

  • 119.

    Csaba, G.: Phylogeny and ontogeny of chemical signaling: Origin and development of hormone receptors. Int Rev Cytol 155, 148 (1994).

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
sumbission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 10 0 0
May 2021 1 0 0
Jun 2021 3 0 0
Jul 2021 11 0 0
Aug 2021 2 0 0
Sep 2021 2 0 0
Oct 2021 0 0 0