View More View Less
  • 1 PannonPharma Ltd., Hungary
  • | 2 University of Pécs, Hungary
  • | 3 Hungarian Academy of Sciences, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.

  • 1.

    Coates, A., Hu, Y., Bax, R., Page, C.: The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1, 895910 (2002).

  • 2.

    Mascio, C. T. M., Alder, J. D., Silverman, J. A.: Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51, 42554260 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ooi, N., Miller, K., Randall, C., Rhys-Williams, W., Love, W., Chopra, I.: XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. J Antimicrob Chemother 65, 7278 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Cotroneo, N., Harris, R., Perlmutter, N., Beveridge, T., Silverman, J. A.: Daptomycin exerts bactericidal action without lysis of Staphylococcus aureus. Antimicrob Agents Chemother 52, 22232225 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Vályi-Nagy, T., Úri, J., Szilágyi, I.: Primycin, a new antibiotic. Nature 174, 11051106 (1954).

  • 6.

    Horváth, I., Kramer, M., Bauer, P. I., Büki, K. G.: The mode of action of primycin. Arch Microbiol 121, 135139 (1979).

  • 7.

    Feiszt, P., Mestyán, G., Kerényi, M., Dobay, O., Szabo, J., Dombrádi, Z., Urbán, E., Emődy, L.: Re-evaluation of in vitro activity of primycin against prevalent multiresistant bacteria. Int J Med Microbiol 304, 10771085 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Nyilasi, I., Kocsubé, S., Pesti, M., Lukács, G., Papp, T., Vágvölgyi, C.: In vitro interactions between primycin and different statins in their effects against some clinically important fungi. J Med Microbiol 59, 200205 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Virág, E., Belagyi, J., Kocsubé, S., Vágvölgyi, C., Pesti, M.: Antifungal activity of the primycin complex and its main components A1, A2 and C1 on a Candida albicans clinical isolate, and their effects on the dynamic plasma membrane changes. J Antibiot (Tokyo) 66, 6772 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Clinical and Laboratory Standards Institute (CLSI): Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline, M26-A. CLSI, Wayne, PA, USA, 1999.

    • Search Google Scholar
    • Export Citation
  • 11.

    Reiss, S., Pané-Farré, J., Fuchs, S., Francois, P., Liebeke, M., Schrenzel, J., Lindequist, U., Lalk, M., Wolz, C., Hecker, M., Engelmann, S.: Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob Agents Chemother 56, 787804 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Yang, S. J., Xiong, Y. Q., Yeaman, M. R., Bayes, K. W., Adbelhady, W., Bayer, A. S.: Role of LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob Agents Chemother 57, 38753882 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Phadtare, S.: Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6, 125134 (2004).

  • 14.

    Virág, E., Juhász, Á., Kardos, R., Gazdag, Z., Papp, G., Pénzes, Á., Nyitrai, M., Vágvölgyi, C., Pesti, M.: In vivo direct interaction of the antibiotic primycin on a Candida albicans clinical isolate and its ergosterol-less mutant. Acta Biol Hung 63, 3851 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Virág, E., Belágyi, J., Gazdag, Z., Vágvölgyi, C., Pesti, M.: Direct in vivo interaction of the antibiotic primycin with the plasma membrane of Candida albicans: An EPR study. Biochim Biophys Acta 1818, 4248 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Xiong, Z., Ge, S., Chamberlain, N. R., Kapral, F. A.: Growth cycle-induced changes in sensitivity of Staphylococcus aureus to bactericidal lipids form abscesses. J Med Microbiol 39, 5863 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hurdle, J. G., O’Neill, A. J., Chopra, I., Lee, R. E.: Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9, 6275 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 4 0 0
Feb 2021 7 0 0
Mar 2021 8 0 0
Apr 2021 9 0 0
May 2021 1 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0