View More View Less
  • 1 King Saud University, Saudi Arabia
  • | 2 King Saud University, Saudi Arabia
  • | 3 King Saud University, Saudi Arabia
  • | 4 Aligarh Muslim University, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Although the antimicrobial activity of the engineered nanoparticles (NPs) is well known, the biochemical mechanisms underlying this activity are not clearly understood. Therefore, four NPs with the highest global production, namely SiO2, TiO2, ZnO, and Ag, were synthesized and characterized. The synthesized SiO2, TiO2, ZnO, and Ag NPs exhibit an average size of 11.12, 13.4, 35, and 50 nm, respectively. The antimicrobial activity of the synthesized NPs against bacteria and fungi were also determined. NPs-mediated inhibition of two very important enzymes, namely urease and DNA polymerase, is also reported. The synthesized NPs especially Ag and ZnO show significant antimicrobial activity against bacteria and fungi including methicillin-resistant Staphylococcus aureus even at low concentration. The DNA polymerase activity was inhibited at a very low concentration range of 2–4 µg/ml, whereas the urease activity was inhibited at a high concentration range of 50–100 µg/ml. Based on their ability to inhibit the urease and DNA polymerase, NPs can be arranged in the following order: Ag > ZnO > SiO2 > TiO2 and Ag > SiO2 > ZnO > TiO2, respectively. As the synthesized NPs inhibit bacterial growth and suppress the activity of urease and DNA polymerase, the use of these NPs to control pathogens is proposed.

  • 1.

    Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B.: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14, 111 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Abeylath, S. C., Turos, E.: Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opin Drug Deliv 5, 931949 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Espitia, P. J. P., Soares, N. D. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S., Medeiros, E. A. A.: Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5, 14471464 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goetz, N.: Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46, 22422250 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Khan, S. T., Al-Khedhairy, A. A., Musarrat, J.: ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: A review. J Nanoparticle Res 17, 116 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Khan, S. T., Ahamed, M., Al-Khedhairy, A., Musarrat, J.: Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation. Mater Lett 97, 6770 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Rai, M., Deshmukh, S., Ingle, A., Gade, A.: Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112, 841852 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Khan, S. T., Musarrat, J., Al-Khedhairy, A. A.: Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf B Biointerfaces 146, 7083 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Rutherford, J. C.: The emerging role of urease as a general microbial virulence factor. PLoS Pathogens 10, e1004062 (2014).

  • 10.

    Dai, X. R., Karring, H.: A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes. PLoS One 9, e110402 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Li, K., Zhao, X., Hammer, B. K., Du, S., Chen, Y.: Nanoparticles inhibit DNA replication by binding to DNA: Modeling and experimental validation. ACS Nano 7, 96649674 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Paillusson, F., Dahirel, V., Jardat, M., Victor, J.-M., Barbi, M.: Effective interaction between charged nanoparticles and DNA. Phys Chem Chem Phys 13, 1260312613 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Railsback, J. G., Singh, A., Pearce, R. C., McKnight, T. E., Collazo, R., Sitar, Z., Yingling, Y. G., Melechko, A. V.: Weakly charged cationic nanoparticles induce DNA bending and strand separation. Adv Mater 24, 42614265 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nandanwar, R., Singh, P., Haque, F. Z., Shabanda, I., Kabiru, N., Bolognesi, L. F. C., Borges, F. A., Cinman, J. L. F., da Silva, R. G., dos Santos, A. G.: Synthesis and characterization of SiO2 nanoparticles by sol-gel process and its degradation of methylene blue. Am Chem Sci J 5, 110 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Raja, M., Shanmugaraj, A. M., Ryu, S. H.: Preparation of template free zinc oxide nanoparticles using sol-gel chemistry. J Nanosci Nanotechnol 8, 42244226 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Castro, A., Nunes, M., Carvalho, A., Costa, F., Florencio, M.: Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity. Solid State Sci 10, 602606 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Khan, M., Khan, S. T., Adil, S. F., Musarrat, J., Al-Khedhairy, A. A., Al-Warthan, A., Siddiqui, M. R., Alkhathlan, H. Z.: Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. Int J Nanomed 9, 35513565 (2014).

    • Search Google Scholar
    • Export Citation
  • 18.

    Khan, S. T., Nakagawa, Y., Harayama, S.: Galbibacter mesophilus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int J Syst Bacteriol 57, 969973 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lundin, C., North, M., Erixon, K., Walters, K., Jenssen, D., Goldman, A. S., Helleday, T.: Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 33, 37993811 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Wahab, R., Khan, S. T., Dwivedi, S., Ahamed, M., Musarrat, J., Al-Khedhairy, A. A.: Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloids Surf B Biointerfaces 111, 211217 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Song, W., Zhang, J., Guo, J., Ding, F., Li, L., Sun, Z.: Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199, 389397 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., Schiestl, R. H.: Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69, 87848789 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kang, T., Guan, R., Chen, X., Song, Y., Jiang, H., Zhao, J.: In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett 8, 18 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Duan, J., Yu, Y., Li, Y., Yu, Y., Li, Y., Zhou, X., Huang, P., Sun, Z.: Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 8, e62087 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kim, H. R., Park, Y. J., Da Young Shin, S. M. O., Chung, K. H.: Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol 28, e2013003 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pan, X., Redding, J. E., Wiley, P. A., Wen, L., McConnell, J. S., Zhang, B.: Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79, 113116 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ahmad, J., Dwivedi, S., Alarifi, S., Al-Khedhairy, A. A., Musarrat, J.: Use of β-galactosidase (lacZ) gene α-complementation as a novel approach for assessment of titanium oxide nanoparticles induced mutagenesis. Mutat Res 747, 246252 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
sumbission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 10 0 0
Jun 2021 14 0 0
Jul 2021 9 0 0
Aug 2021 8 0 0
Sep 2021 8 0 0
Oct 2021 4 0 0
Nov 2021 0 0 0