View More View Less
  • 1 King Saud University, Saudi Arabia
  • 2 King Saud University, Saudi Arabia
  • 3 King Saud University, Saudi Arabia
  • 4 Aligarh Muslim University, India
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Although the antimicrobial activity of the engineered nanoparticles (NPs) is well known, the biochemical mechanisms underlying this activity are not clearly understood. Therefore, four NPs with the highest global production, namely SiO2, TiO2, ZnO, and Ag, were synthesized and characterized. The synthesized SiO2, TiO2, ZnO, and Ag NPs exhibit an average size of 11.12, 13.4, 35, and 50 nm, respectively. The antimicrobial activity of the synthesized NPs against bacteria and fungi were also determined. NPs-mediated inhibition of two very important enzymes, namely urease and DNA polymerase, is also reported. The synthesized NPs especially Ag and ZnO show significant antimicrobial activity against bacteria and fungi including methicillin-resistant Staphylococcus aureus even at low concentration. The DNA polymerase activity was inhibited at a very low concentration range of 2–4 µg/ml, whereas the urease activity was inhibited at a high concentration range of 50–100 µg/ml. Based on their ability to inhibit the urease and DNA polymerase, NPs can be arranged in the following order: Ag > ZnO > SiO2 > TiO2 and Ag > SiO2 > ZnO > TiO2, respectively. As the synthesized NPs inhibit bacterial growth and suppress the activity of urease and DNA polymerase, the use of these NPs to control pathogens is proposed.

  • 1.

    Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B.: Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14, 111 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Abeylath, S. C., Turos, E.: Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opin Drug Deliv 5, 931949 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Espitia, P. J. P., Soares, N. D. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S., Medeiros, E. A. A.: Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5, 14471464 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., von Goetz, N.: Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46, 22422250 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Khan, S. T., Al-Khedhairy, A. A., Musarrat, J.: ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: A review. J Nanoparticle Res 17, 116 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Khan, S. T., Ahamed, M., Al-Khedhairy, A., Musarrat, J.: Biocidal effect of copper and zinc oxide nanoparticles on human oral microbiome and biofilm formation. Mater Lett 97, 6770 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Rai, M., Deshmukh, S., Ingle, A., Gade, A.: Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112, 841852 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Khan, S. T., Musarrat, J., Al-Khedhairy, A. A.: Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf B Biointerfaces 146, 7083 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Rutherford, J. C.: The emerging role of urease as a general microbial virulence factor. PLoS Pathogens 10, e1004062 (2014).

  • 10.

    Dai, X. R., Karring, H.: A determination and comparison of urease activity in feces and fresh manure from pig and cattle in relation to ammonia production and pH changes. PLoS One 9, e110402 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Li, K., Zhao, X., Hammer, B. K., Du, S., Chen, Y.: Nanoparticles inhibit DNA replication by binding to DNA: Modeling and experimental validation. ACS Nano 7, 96649674 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Paillusson, F., Dahirel, V., Jardat, M., Victor, J.-M., Barbi, M.: Effective interaction between charged nanoparticles and DNA. Phys Chem Chem Phys 13, 1260312613 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Railsback, J. G., Singh, A., Pearce, R. C., McKnight, T. E., Collazo, R., Sitar, Z., Yingling, Y. G., Melechko, A. V.: Weakly charged cationic nanoparticles induce DNA bending and strand separation. Adv Mater 24, 42614265 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nandanwar, R., Singh, P., Haque, F. Z., Shabanda, I., Kabiru, N., Bolognesi, L. F. C., Borges, F. A., Cinman, J. L. F., da Silva, R. G., dos Santos, A. G.: Synthesis and characterization of SiO2 nanoparticles by sol-gel process and its degradation of methylene blue. Am Chem Sci J 5, 110 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Raja, M., Shanmugaraj, A. M., Ryu, S. H.: Preparation of template free zinc oxide nanoparticles using sol-gel chemistry. J Nanosci Nanotechnol 8, 42244226 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Castro, A., Nunes, M., Carvalho, A., Costa, F., Florencio, M.: Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity. Solid State Sci 10, 602606 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Khan, M., Khan, S. T., Adil, S. F., Musarrat, J., Al-Khedhairy, A. A., Al-Warthan, A., Siddiqui, M. R., Alkhathlan, H. Z.: Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. Int J Nanomed 9, 35513565 (2014).

    • Search Google Scholar
    • Export Citation
  • 18.

    Khan, S. T., Nakagawa, Y., Harayama, S.: Galbibacter mesophilus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int J Syst Bacteriol 57, 969973 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lundin, C., North, M., Erixon, K., Walters, K., Jenssen, D., Goldman, A. S., Helleday, T.: Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 33, 37993811 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Wahab, R., Khan, S. T., Dwivedi, S., Ahamed, M., Musarrat, J., Al-Khedhairy, A. A.: Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloids Surf B Biointerfaces 111, 211217 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Song, W., Zhang, J., Guo, J., Ding, F., Li, L., Sun, Z.: Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199, 389397 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., Schiestl, R. H.: Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69, 87848789 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kang, T., Guan, R., Chen, X., Song, Y., Jiang, H., Zhao, J.: In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett 8, 18 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Duan, J., Yu, Y., Li, Y., Yu, Y., Li, Y., Zhou, X., Huang, P., Sun, Z.: Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 8, e62087 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kim, H. R., Park, Y. J., Da Young Shin, S. M. O., Chung, K. H.: Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol 28, e2013003 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pan, X., Redding, J. E., Wiley, P. A., Wen, L., McConnell, J. S., Zhang, B.: Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 79, 113116 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ahmad, J., Dwivedi, S., Alarifi, S., Al-Khedhairy, A. A., Musarrat, J.: Use of β-galactosidase (lacZ) gene α-complementation as a novel approach for assessment of titanium oxide nanoparticles induced mutagenesis. Mutat Res 747, 246252 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2020 0 20 16
Jun 2020 0 3 1
Jul 2020 3 3 1
Aug 2020 3 0 0
Sep 2020 5 1 0
Oct 2020 4 0 0
Nov 2020 0 0 0