View More View Less
  • 1 School of Medicine, Iran University of Medical Sciences, Iran
  • | 2 Clinical Microbiology Research Center, Ilam University of Medical Sciences, Iran
  • | 3 School of Medicine, Tehran University of Medical Sciences, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Klebsiella spp. are among the most frequently isolated bacteria from burn wounds. These organisms are among the most important opportunistic pathogens, causing hospital-acquired and healthcare-associated infections worldwide. Limited information is available about prevalence of AmpC-producing Klebsiella pneumoniae from burn patients. Therefore, the aim of this study was to determine the characterization of AmpC beta-lactamase among K. pneumoniae isolated from burn patients. Samples were collected from wound specimens of patients with burn injury from a burn hospital in Tehran during 18 months (March 2015 to August 2016). For phenotypic detection of AmpC beta-lactamase, disk diffusion method with cefoxitin was used for screening, AmpC disk test and boronic acid inhibitor-based method were used as confirmatory tests. Polymerase chain reaction (PCR) was performed to screen all isolates with AmpC genes including ACCM, DHAM, EBCM, FOXM, MOXM, and CITM. Finally, PCR products were validated using sequencing. During this study, 102 isolates of K. pneumoniae were collected. Among these isolates, 52.9% suspected as AmpC producer by disk agar diffusion cefoxitin screening method. By confirmatory phenotypic methods, 19.6% of isolates considered as AmpC producer. Molecular analysis revealed 43.1% of cefoxitin-resistant isolates harbored at least one of the AmpC genes including CITM (22.5%), EBCM (21.5%), DHAM (7.8%), and FOXM (0.98%). In addition, 5.8% of isolates harbored two AmpC genes and 2.9% harbored three AmpC genes. In conclusion, K. pneumoniae is becoming a serious problem in burn patients. Accurate and precise methods and guidelines should be designed for detection of antibiotic-resistant mechanisms. Our data showed the high rate of AmpC beta-lactamase among K. pneumoniae isolated from burn patients, which limit the treatment options. Therefore, the results of this study can provide evidence to help for appropriate treatment of burn patients.

  • 1.

    Wang, L. F., Li, J. L., Ma, W. H., Li, J. Y.: Drug resistance analysis of bacterial strains isolated from burn patients. Genet Mol Res 13, 97279734 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Mehta, M., Dutta, P., Gupta, V.: Bacterial isolates from burn wound infections and their antibiograms: A eight-year study. Indian J Plast Surg 40, 25 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Seifi, K., Kazemian, H., Heidari, H.: Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur J Microbiol 9, e30682 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Nordmann, P., Cuzon, G., Naas, T.: The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9, 228236 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Melegh, S., Schneider, G., Horváth, M., Jakab, F., Emődy, L., Tigyi, Z.: Identification and characterization of CTX-M-15 producing Klebsiella pneumoniae clone ST101 in a Hungarian university teaching hospital. Acta Microbiol Immunol Hung 62, 233245 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanchez, G. V.: Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998–2010. Emerg Infect Dis 19, 133136 (2013).

  • 7.

    Shaikh, S., Fatima, J., Shakil, S.: Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 22, 90101 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    D’Angelo, R. G., Johnson, J. K., Bork, J. T.: Treatment options for extended-spectrum beta-lactamase (ESBL) and AmpC-producing bacteria. Expert Opin Pharmacother 17, 953967 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Liu, X. Q., Liu, Y. R.: Detection and genotype analysis of AmpC β-lactamase in Klebsiella pneumoniae from tertiary hospitals. Exp Ther Med 12, 480484 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hsieh, W. S., Wang, N. Y., Feng, J. A.: Identification of DHA-23, a novel plasmid-mediated and inducible AmpC beta-lactamase from Enterobacteriaceae in Northern Taiwan. Front Microbiol 6, 436 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Helmy, M. M., Wasfi, R.: Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. Biomed Res Int 2014, 171548 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wang, Y., Lv, Y., Cai, J.: A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70, 21822190 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Black, J. A., Moland, E. S., Thomson, K. S.: AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol 43, 31103113 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Coudron, P. E.: Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 43, 41634167 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pérez-Pérez, F. J., Hanson, N. D.: Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40, 21532162 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Jacoby, G. A.: AmpC β-lactamases. Clin Microbiol Rev 22, 161182 (2009).

  • 17.

    Azimi, L., Erajiyan, G., Talebi, M.: Phenotypic and molecular characterization of plasmid mediated AmpC among clinical isolates of Klebsiella pneumoniae isolated from different hospitals in Tehran. J Clin Diagn Res 9, DC01 (2015).

    • Search Google Scholar
    • Export Citation
  • 18.

    Doddaiah, V., Anjaneya, D.: Prevalence of ESBL, AmpC and carbapenemase among Gram negative bacilli isolated from clinical specimens. Am J Life Sci 2, 7681 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Grover, N., Sahni, A. K., Bhattacharya, S.: Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med J Armed Forces India 69, 410 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Grover, N., Sahni, A. K., Bhattacharya, S.: Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med J Armed Forces India 69, 410 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Japoni-Nejad, A., Ghaznavi-Rad, E., van Belkum, A.: Characterization of plasmid-mediated AmpC and carbapenemases among Iranain nosocomial isolates of Klebsiella pneumoniae using phenotyping and genotyping methods. Osong Public Health Res Perspect 5, 333338 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Jean, S. S., Hsueh, P. R., Korman, T.: Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–14: Results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J Antimicrob Chemother 72, 166171 (2017).

    • Search Google Scholar
    • Export Citation
  • 23.

    Saidi, M., Sadeghifard, N., Kazemian, H.: Ex vivo evaluation of thymus daenensis as an antioxidant and antibacterial medicinal herb. Drug Res 66, 657659 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kazemian, H., Ghafourian, S., Heidari, H., Amiri, P., Yamchi, J. K., Shavalipour, A., Houri, H., Maleki, A., Sadeghifard, N.: Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev Soc Bras Med Trop 48, 432436 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 10 0 0
Feb 2021 18 0 0
Mar 2021 10 0 0
Apr 2021 16 0 0
May 2021 101 0 0
Jun 2021 5 0 0
Jul 2021 0 0 0