View More View Less
  • 1 Ankara University, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Biofilm structures are the most resistant form of active microorganisms against sanitation, disinfection, and sterilization processes. One of the specific properties of biofilm is the development of antibiotic resistance that can be up to 1,000-fold greater than planktonic cells. Enterococcus faecium is a human pathogen that causes nosocomial bacteremia and at the present time, it is well known that most of the chronic infections are biofilm-based. Recent evidence suggested that subinhibitory concentrations (sub-MICs) of antibiotics have an important role in the evolution of antibiotic resistance and induction on biofilm formation. Based on this information, we aimed to determine the effect of subinhibitory antibiotic concentrations on biofilm formation and the role of the antibiotic concentrations on the enterococcal surface protein gene (esp). To determine the impact of clinically important antibiotics on biofilm production, crystal violet assay was used. Then, the effect of sub-MICs of antibiotics on the expression of the esp gene was investigated by quantitative real-time PCR. Biofilm production assays show that MIC/2 of erythromycin (ERT; 512 μg/ml), MIC/32 of vancomycin (VAN; 16 μg/ml), MIC/64 of streptomycin (STR; 32 μg/ml), and MIC/128 of kanamycin (KAN; 4 μg/ml) values induce maximum biofilm production compared with the control. According to q-PCR results, sub-MIC values of ERT, VAN, and STR antibiotics were found to enhance esp gene expression. In addition, despite the increasing biofilm production after KAN treatment, the antibiotic was not effective on the esp expression.

  • 1.

    Aka, S. T., Haji, S. H.: Sub-MIC of antibiotics induced biofilm formation of Pseudomonas aeruginosa in the presence of chlorhexidine. Braz J Microbiol 46, 149154 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Weiner, L. M., Webb, A. K., Walters, M. S., Dudeck, M. A., Kallen, A. J.: Policies for controlling multidrug-resistant organisms in US healthcare facilities reporting to the National Healthcare Safety Network, 2014. Infect Control Hosp Epidemiol, 37, 11051108 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mohamed, J. A., Huang, D. B.: Biofilm formation by enterococci. J Med Microbiol 56, 15811588 (2007).

  • 4.

    Paganelli, F. L., Willems, R. J. L., Jansen, P., Hendrickx, A., Zhang, X., Bonten, M. J. M., Leavis, H. L.: Enterococcus faecium biofilm formation: Identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA release. mBio 4, e00154-13 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Shankar, V., Baghdayan, A. S., Huycke, M. M., Lindahl, G., Gilmore, M. S.: Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67, 193200 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Eaton, T. J., Gasson, M. J.: A variant enterococcal surface protein Esp (fm) in Enterococcus faecium; distribution among food, commensal, medical, and environmental isolates. FEMS Microbiol Lett 216, 269275 (2002).

    • Search Google Scholar
    • Export Citation
  • 7.

    Shankar, N., Baghdayan, A. S., Gilmore, M. S.: Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417, 746750 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Leavis, H., Top, J., Shankar, N., Borgen, K., Bonten, M., van Embden, J., Willems, R. J. : A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol 186, 672682 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Toledo-Arana, A., Valle, J., Solano, C., Arrizubieta, M. J., Cucarella, C., Lamata, M., Amorena, B., Leiva, J., Penadés, J. R., Lasa, I.: The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67, 45384545 (2001).

    • Search Google Scholar
    • Export Citation
  • 10.

    Tendolkar, P. M., Baghdayan, A. S., Shankar, N.: The Nterminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis. J Bacteriol 187, 62136222 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Tendolkar, P. M., Baghdayan, A. S., Shankar, N.: Putative surface proteins encoded within a novel transferable locus confer a high-biofilm phenotype to Enterococcus faecalis. J Bacteriol 188, 20632072 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Diani, M., Esiyok, O. G., Ariafar, M. N., Yuksel, F. N., Altuntas, E. G., Akcelik, N.: The interactions between esp, fsr, gelE genes and biofilm formation and pfge analysis of clinical Enterococcus faecium strains. Afr J Microbiol Res 8, 129137 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Pillai, S. K., Sakoulas, G., Eliopoulos, G. M., Moellering, R. C., Jr., Murray, B. E., Inouye, R. T.: Effects of glucose on fsr-mediated biofilm formation in Enterococcus faecalis. J Infect Dis 190, 967970 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Tendolkar, P. M., Baghdayan, A. S., Gilmore, M. S., Shankar, N.: Enterococcal surface protein, Esp, enhances biofilm formation by Enterococcus faecalis. Infect Immun 72, 60326039 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Sandoe, J. A., Witherden, I. R., Cove, J. H., Heritage, J., Wilcox, M. H.: Correlation between enterococcal biofilm formation in vitro and medical-device-related infection potential in vivo. J Med Microbiol 52, 547550 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dworniczek, E., Wojciech, L., Sobieszczanska, B., Seniuk, A.: Virulence of Enterococcus isolates collected in Lower Silesia (Poland). Scand J Infect Dis 37, 630636 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Raad, I. I., Hanna, H. A., Boktour, M., Chaiban, G., Hachem, R. Y., Dvorak, T., Lewis, R., Murray, B. E.: Vancomycin-resistant Enterococcus faecium: Catheter colonization, esp gene, and decreased susceptibility to antibiotics in biofilm. Antimicrob Agents Chemother 49, 50465050 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ramadhan, A. A., Hegedus, E.: Biofilm formation and esp gene carriage in enterococci. J Clin Pathol 58, 685686 (2005).

  • 19.

    Davies, J.: Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33, 496499 (2006).

  • 20.

    Romero, D., Traxler, M. F., López, D., Kolter, R.: Antibiotics as signal molecules. Chem Rev 111, 54925505 (2011).

  • 21.

    Sengupta, S., Chattopadhyay, M. K., Grossart, H. P.: The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4, 47 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Andersson, D. I., Hughes, D.: Microbiological effects of sub lethal levels of antibiotics. Nat Rev Microbiol 12, 465478 (2014).

  • 23.

    Balcázar, J. L., Subirats, J., Borrego, C. M.: The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol, 6, 1216 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Beaber, J. W., Hochhut, B., Waldor, M. K.: SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 7274 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Miller, C., Thomsen, L. E., Gaggero, C., Mosseri, R., Ingmer, H., Cohen, S. N.: SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305, 16291631 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Maiques, E., Úbeda, C., Campoy, S., Lasa, I., Novick, R. P., Barbé, J., Penadés, J. R.: β-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. Appl Environ Microbiol 188, 27262729 (2006).

    • Search Google Scholar
    • Export Citation
  • 27.

    Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., Miller, S. I.: Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436, 11711175 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tezel, B. U., Akçelik, N., Yüksel, F. N., Karatuğ, N. T., Akçelik, M.: Effects of sub-MIC antibiotic concentrations on biofilm production of Salmonella Infantis. Biotechnol Biotechnol Equip 30, 11841191 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Balaji, K., Thenmozhi, R., Pandian, S. K.: Effect of subinhibitory concentrations of fluoroquinolones on biofilm production by clinical isolates of Streptococcus pyogenes. Indian J Med Res 137, 963971 (2013).

    • Search Google Scholar
    • Export Citation
  • 30.

    Mlynek, K. D., Callahan, M. T., Shimkevitch, A. V., Farmer, J. T., Endres, J. L., Marchand, M., Bayles, K. W., Horswill, A. R., Kaplana, J. B.: Effects of low-dose amoxicillin on Staphylococcus aureus USA300 biofilms. Antimicrob Agents Chemother 60, 26392651 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kafil, H. S., Mobarez, A. M., Moghadam, M. F., Hashemi, Z. S., Yousefi, M.: Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis. Microb Pathog 92, 3035 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Extremina, C. I., Costa, L., Aguiar, A. I., Peixe, L., Fonseca, A. P.: Optimization of processing conditions for the quantification of enterococci biofilms using microtitreplates. J Microbiol Methods 84, 167173 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Baldassarri, L., Cecchini, R., Bertuccini, L., Ammendolia, M. G., Losi, F., Arciola, C. R., Montanaro, L., Di Rosa, R., Gherardi, G., Dicuonzo, G., Orefici, G., Creti, R.: Enterococcus spp. produces slime and survives in rat peritoneal macrophages. Med Microbiol Immunol 190, 113120 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Diani (2016): Determination biofilm producing characteristics of Enterococcus strains isolated from Turkey originated cheese samples, PhD thesis, Ankara University Biotechnology Institute, Turkey.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mengeloğlu, F. Z., Çakır, D., Terzi, H. A.: Comparison of resistance in isolates of Enterococcus faecalis and Enterococcus faecium. J Microbiol Infect Dis 1, 1013 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Banerjee, T., Anupurba, S.: Prevalence of virulence factors and drug resistance in clinical isolates of Enterococci: A study from North India. J Pathogens 2015, 692612 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Kolli, H. R., Swarnalatha, K., Reddy, B. S., Singh, M., Kabra, V.: Isolation and identification of vancomycin resistance Enterococci from clinical specimens. Med Sci 6, 914 (2016).

    • Search Google Scholar
    • Export Citation
  • 38.

    Sundaram, M., Kavita, Y., Mohiddin, S. K.: Antibiogram of Enterococcal species isolated from clinical specimens in a tertiary care teaching hospital. J Evolution Med Dent Sci 5, 29552958 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Sieńko, A., Wieczorek, P., Majewski, P., Ojdana, D., Wieczorek, A., Olszańska, D., Tryniszewska, E.: Comparison of antibiotic resistance and virulence between biofilm-producing and non-producing clinical isolates of Enterococcus faecium. Acta Biochimica Pol 62, 859866 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Sindhanai, V., Avanthiga, S. S., Chander, V. C. S.: Antibiotic susceptibility pattern of biofilm forming and biofilm non forming Enterococci species. IOSR J Dental Med Sci 15, 3337 (2016).

    • Search Google Scholar
    • Export Citation
  • 41.

    Bhardwaj, S. B., Mehta, M., Sood, S., Sharma, J.: Biofilm formation by drug resistant Enterococci isolates obtained from chronic periodontitis patients. J Clin Diagn Res 11, DC01DC03 (2017).

    • Search Google Scholar
    • Export Citation
  • 42.

    Kaplan, J. B.: Antibiotic-induced biofilm formation. Int J Artif Organs 34, 737751 (2011).

  • 43.

    Favre-Bonte, S., Kohler, T., Van Delden, C.: Biofilm formation by Pseudomonas aeruginosa: Role of the C4-HSL cell-to-cell signal and inhibition by azithromycin. J Antimicrob Chemother 52, 598604 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Kafil, H. S., Mobarez, A. M., Moghadam, M. F.: Adhesion and virulence factor properties of Enterococci isolated from clinical samples in Iran. Indian J Pathol Microbiol 56, 23842 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 5 0 0
Feb 2021 25 0 0
Mar 2021 14 0 0
Apr 2021 9 0 0
May 2021 9 0 0
Jun 2021 17 0 0
Jul 2021 0 0 0