View More View Less
  • 1 School of Medicine, Iran University of Medical Sciences, Iran
  • | 2 Urmia University of Medical Sciences, Iran
  • | 3 Isfahan University of Medical Sciences, Iran
  • | 4 Shahid Beheshti University of Medical Sciences, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Today, to replace the antibacterial targets to overcome antibiotic resistance, toxin–antitoxin (TA) system is noticeable, where the unstable antitoxin neutralizes the stable toxin and protects the bacteria against the toxic effects. The presence and expression of TA genes in clinical and non-clinical strains of Staphylococcus epidermidis were investigated in this study. After identification of three TA pairs (mazEF, sam, and phd-doc) via existing databases (earlier, there has been no information in the case of S. epidermidis isolates), the presence and expression of these pairs were investigated by PCR and q-PCR, respectively. We detected three TA modules in all antibiotic sensitive and resistant isolates. In addition, q-PCR analysis revealed that the transcripts were produced from the three TA modules. This study showed the significant prevalence of these systems in pathogenic bacteria and they were equally found in both oxacillin-resistant and oxacillin-susceptible bacteria. The high prevalence of three systems can make them suitable as potential targets for antibiotic therapy.

  • 1.

    Yamaguchi, Y., Park, J.-H., Inouye, M.: Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45, 6179 (2011).

  • 2.

    Ghafourian, S., Raftari, M., Sadeghifard, N., Sekawi, Z.: Toxin-antitoxin systems: Classification, biological function and application in biotechnology. Curr Issues Mol Biol 16, 914 (2013).

    • Search Google Scholar
    • Export Citation
  • 3.

    Sadeghifard, N., Soheili, S., Sekawi, Z., Ghafourian, S.: Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis? GMS Hyg Infect Control 9, (2014).

    • Search Google Scholar
    • Export Citation
  • 4.

    Savari, M., Rostami, S., Ekrami, A., Bahador, A.: Characterization of toxin-antitoxin (TA) systems in Pseudomonas aeruginosa clinical isolates in Iran. Jundishapur J Microbiol 9, e26627 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mine, N., Guglielmini, J., Wilbaux, M., Van Melderen, L.: The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species. Genetics 181, 15571566 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Schuster, C. F., Bertram, R.: Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340, 7385 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wang, X., Lord, D. M., Cheng, H.-Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W.: A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8, 855861 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hall, A. M., Gollan, B., Helaine, S.: Toxin-antitoxin systems: Reversible toxicity. Curr Opin Microbiol 36, 102110 (2017).

  • 9.

    Mutschler, H., Meinhart, A.: ε/ζ systems: Their role in resistance, virulence, and their potential for antibiotic development. J Mol Med 89, 11831194 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chaudhry, V., Patil, P. B.: Genomic investigation reveals evolution and lifestyle adaptation of endophytic Staphylococcus epidermidis. Sci Rep 6, 19263 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Vandecandelaere, I., Coenye, T.: Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients. In Gianfranco, D. (ed): Biofilm-Based Healthcare-Associated Infections. Springer, Cham, Switzerland, 2015, pp. 137155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Morgenstern, M., Erichsen, C., Hackl, S., Mily, J., Militz, M., Friederichs, J., Hungerer, S., Bühren, V., Moriarty, T. F., Post, V.: Antibiotic resistance of commensal Staphylococcus aureus and coagulase-negative staphylococci in an international cohort of surgeons: A prospective point-prevalence study. PLoS One 11, e0148437 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., Hazan, R.: Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12, 6671 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gerdes, K., Christensen, S. K., Løbner-Olesen, A.: Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3, 371 (2005).

  • 15.

    DeNap, J. C., Hergenrother, P. J.: Bacterial death comes full circle: Targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 3, 959966 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Drew, W. L., Barry, A., O’Toole, R., Sherris, J. C.: Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl Microbiol 24, 240247 (1972).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sevin, E. W., Barloy-Hubler, F.: RASTA-Bacteria: A web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8, 1 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H.-Y., Rajakumar, K., Deng, Z.: TADB: A web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 39, D606D611 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rychlik, W.: OLIGO 7 Primer Analysis Software. In Yuryev, A. (ed): PCR Primer Design. Methods in Molecular Biology™. Humana Press, Totowa, NJ, 2007, Vol. 402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Makarova, K. S., Wolf, Y. I., Koonin, E. V.: Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4, 19 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kim, Y., Wang, X., Ma, Q., Zhang, X.-S., Wood, T. K.: Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 191, 12581267 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., Salmond, G. P.: The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A, 106, 894899 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hazan, R., Engelberg-Kulka, H.: Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 272, 227234 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Norton, J. P., Mulvey, M. A.: Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8, e1002954 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ren, D., Walker, A. N., Daines, D. A.: Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. BMC Microbiol 12, 263 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Rowe-Magnus, D. A., Guerout, A.-M., Biskri, L., Bouige, P., Mazel, D.: Comparative analysis of superintegrons: Engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13, 428442 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Namvar, A. E., Bastarahang, S., Abbasi, N., Ghehi, G. S., Farhadbakhtiarian, S., Arezi, P., Hosseini, M., Baravati, S. Z., Jokar, Z., Chermahin, S. G.: Clinical characteristics of Staphylococcus epidermidis: A systematic review. GMS Hyg Infect Control 9, (2014).

    • Search Google Scholar
    • Export Citation
  • 28.

    Yamaguchi, Y., Inouye, M.: Toxin-antitoxin systems in bacteria and archaea. In de Bruijn, Frans J. (ed): Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria. John Wiley & Sons Inc., Hoboken, NJ, 2016, pp. 97107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Jain, S., SenGupta, M., Sinha, A., Sarkar, S.: Identification of MazEF toxin-antitoxin system and biofilm formation in clinical isolates of MRSA isolated from Eastern India. Al Ameen J Med Sci 9, 5357 (2016).

    • Search Google Scholar
    • Export Citation
  • 30.

    Moritz, E. M., Hergenrother, P. J.: Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 104, 311316 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lehnherr, H., Maguin, E., Jafri, S., Yarmolinsky, M. B.: Plasmid addiction genes of bacteriophage P1: Doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol 233, 414428 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Garcia-Pino, A., Christensen-Dalsgaard, M., Wyns, L., Yarmolinsky, M., Magnuson, R. D., Gerdes, K., Loris, R.: Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J Biol Chem 283, 3082130827 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 189 189 27
Full Text Views 32 8 0
PDF Downloads 19 7 0