View More View Less
  • 1 School of Medicine, Iran University of Medical Sciences, Iran
  • | 2 Urmia University of Medical Sciences, Iran
  • | 3 Isfahan University of Medical Sciences, Iran
  • | 4 Shahid Beheshti University of Medical Sciences, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Today, to replace the antibacterial targets to overcome antibiotic resistance, toxin–antitoxin (TA) system is noticeable, where the unstable antitoxin neutralizes the stable toxin and protects the bacteria against the toxic effects. The presence and expression of TA genes in clinical and non-clinical strains of Staphylococcus epidermidis were investigated in this study. After identification of three TA pairs (mazEF, sam, and phd-doc) via existing databases (earlier, there has been no information in the case of S. epidermidis isolates), the presence and expression of these pairs were investigated by PCR and q-PCR, respectively. We detected three TA modules in all antibiotic sensitive and resistant isolates. In addition, q-PCR analysis revealed that the transcripts were produced from the three TA modules. This study showed the significant prevalence of these systems in pathogenic bacteria and they were equally found in both oxacillin-resistant and oxacillin-susceptible bacteria. The high prevalence of three systems can make them suitable as potential targets for antibiotic therapy.

  • 1.

    Yamaguchi, Y., Park, J.-H., Inouye, M.: Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet 45, 6179 (2011).

  • 2.

    Ghafourian, S., Raftari, M., Sadeghifard, N., Sekawi, Z.: Toxin-antitoxin systems: Classification, biological function and application in biotechnology. Curr Issues Mol Biol 16, 914 (2013).

    • Search Google Scholar
    • Export Citation
  • 3.

    Sadeghifard, N., Soheili, S., Sekawi, Z., Ghafourian, S.: Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis? GMS Hyg Infect Control 9, (2014).

    • Search Google Scholar
    • Export Citation
  • 4.

    Savari, M., Rostami, S., Ekrami, A., Bahador, A.: Characterization of toxin-antitoxin (TA) systems in Pseudomonas aeruginosa clinical isolates in Iran. Jundishapur J Microbiol 9, e26627 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mine, N., Guglielmini, J., Wilbaux, M., Van Melderen, L.: The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species. Genetics 181, 15571566 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Schuster, C. F., Bertram, R.: Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 340, 7385 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Wang, X., Lord, D. M., Cheng, H.-Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W.: A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8, 855861 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hall, A. M., Gollan, B., Helaine, S.: Toxin-antitoxin systems: Reversible toxicity. Curr Opin Microbiol 36, 102110 (2017).

  • 9.

    Mutschler, H., Meinhart, A.: ε/ζ systems: Their role in resistance, virulence, and their potential for antibiotic development. J Mol Med 89, 11831194 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chaudhry, V., Patil, P. B.: Genomic investigation reveals evolution and lifestyle adaptation of endophytic Staphylococcus epidermidis. Sci Rep 6, 19263 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Vandecandelaere, I., Coenye, T.: Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients. In Gianfranco, D. (ed): Biofilm-Based Healthcare-Associated Infections. Springer, Cham, Switzerland, 2015, pp. 137155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Morgenstern, M., Erichsen, C., Hackl, S., Mily, J., Militz, M., Friederichs, J., Hungerer, S., Bühren, V., Moriarty, T. F., Post, V.: Antibiotic resistance of commensal Staphylococcus aureus and coagulase-negative staphylococci in an international cohort of surgeons: A prospective point-prevalence study. PLoS One 11, e0148437 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., Hazan, R.: Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12, 6671 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gerdes, K., Christensen, S. K., Løbner-Olesen, A.: Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3, 371 (2005).

  • 15.

    DeNap, J. C., Hergenrother, P. J.: Bacterial death comes full circle: Targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 3, 959966 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Drew, W. L., Barry, A., O’Toole, R., Sherris, J. C.: Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl Microbiol 24, 240247 (1972).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sevin, E. W., Barloy-Hubler, F.: RASTA-Bacteria: A web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol 8, 1 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H.-Y., Rajakumar, K., Deng, Z.: TADB: A web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 39, D606D611 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rychlik, W.: OLIGO 7 Primer Analysis Software. In Yuryev, A. (ed): PCR Primer Design. Methods in Molecular Biology™. Humana Press, Totowa, NJ, 2007, Vol. 402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Makarova, K. S., Wolf, Y. I., Koonin, E. V.: Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 4, 19 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kim, Y., Wang, X., Ma, Q., Zhang, X.-S., Wood, T. K.: Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 191, 12581267 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., Salmond, G. P.: The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci U S A, 106, 894899 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hazan, R., Engelberg-Kulka, H.: Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 272, 227234 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Norton, J. P., Mulvey, M. A.: Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8, e1002954 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ren, D., Walker, A. N., Daines, D. A.: Toxin-antitoxin loci vapBC-1 and vapXD contribute to survival and virulence in nontypeable Haemophilus influenzae. BMC Microbiol 12, 263 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Rowe-Magnus, D. A., Guerout, A.-M., Biskri, L., Bouige, P., Mazel, D.: Comparative analysis of superintegrons: Engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13, 428442 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Namvar, A. E., Bastarahang, S., Abbasi, N., Ghehi, G. S., Farhadbakhtiarian, S., Arezi, P., Hosseini, M., Baravati, S. Z., Jokar, Z., Chermahin, S. G.: Clinical characteristics of Staphylococcus epidermidis: A systematic review. GMS Hyg Infect Control 9, (2014).

    • Search Google Scholar
    • Export Citation
  • 28.

    Yamaguchi, Y., Inouye, M.: Toxin-antitoxin systems in bacteria and archaea. In de Bruijn, Frans J. (ed): Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria. John Wiley & Sons Inc., Hoboken, NJ, 2016, pp. 97107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Jain, S., SenGupta, M., Sinha, A., Sarkar, S.: Identification of MazEF toxin-antitoxin system and biofilm formation in clinical isolates of MRSA isolated from Eastern India. Al Ameen J Med Sci 9, 5357 (2016).

    • Search Google Scholar
    • Export Citation
  • 30.

    Moritz, E. M., Hergenrother, P. J.: Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 104, 311316 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lehnherr, H., Maguin, E., Jafri, S., Yarmolinsky, M. B.: Plasmid addiction genes of bacteriophage P1: Doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. J Mol Biol 233, 414428 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Garcia-Pino, A., Christensen-Dalsgaard, M., Wyns, L., Yarmolinsky, M., Magnuson, R. D., Gerdes, K., Loris, R.: Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J Biol Chem 283, 3082130827 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 652 EUR / 812 USD
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 17 0 0
Jul 2021 31 2 2
Aug 2021 22 0 0
Sep 2021 46 0 0
Oct 2021 36 0 0
Nov 2021 30 0 0
Dec 2021 0 0 0