View More View Less
  • 1 School of Medicine, Tehran University of Medical Sciences, Iran
  • | 2 School of Medicine, Tehran University of Medical Sciences, Iran
  • | 3 School of Medicine, Tehran University of Medical Sciences, Iran
  • | 4 Razi Vaccine & Serum Research Institute, Iran
  • | 5 Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

One third of the world population are latently infected with Mycobacterium tuberculosis and are at the risk of reactivation of tuberculosis (TB). The most effective strategy for control of TB worldwide is the development of a vaccine that inhibits progression of latent TB to active infection. In this study, two optimized constructs consisting of multi-epitopes DNA derived from three latency antigens Rv2029c, Rv2031c, and Rv2627c fused with or without light chain 3 (LC3) are synthetized. The immunogenicity effectiveness of two DNA constructs was evaluated in the mouse model. LC3-fused multi-epitope DNA construct induced strong specific Th1 immune responses with high increase in IFN-γ+ CD4+ and IL-2+ CD4+ T cell populations (both with p < 0.0001) and IFN-γ+ IL-2+ CD4+ T cell population (p < 0.0001) compared with empty vector, BCG, and multi-epitope DNA construct groups. The LC3-fused construct induced IFN-γ+ CD8+ T cell population (p < 0.0001) compared with empty vector and BCG groups but could not induce the T cell population compared with construct without LC3. Importantly, LC3-fused DNA construct did not induce epitope-specific IL-4 and IL-10 from CD4+ and CD8+ T cell populations. The results indicated that LC3-fused multi-epitope DNA construct has a potential to be investigated for future development of a new TB vaccine.

  • 1.

    Dheda, K., Barry, C. E., 3rd, Maartens, G.: Tuberculosis. Lancet 387, 12111226 (2016).

  • 2.

    World Health Organization: Global Tuberculosis Report 2016. WHO, Geneva, 2016.

  • 3.

    Nguipdop-Djomo, P., Heldal, E., Rodrigues, L. C., Abubakar, I., Mangtani, P.: Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: A retrospective population-based cohort study. Lancet Infect Dis 16, 219226 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Principi, N., Esposito, S.: The present and future of tuberculosis vaccinations. Tuberculosis (Edinb) 95, 613 (2015).

  • 5.

    Glaziou, P., Sismanidis, C., Floyd, K., Raviglione, M.: Global epidemiology of tuberculosis. Cold Spring Harb Perspect Med 5, a017798 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Henao-Tamayo, M., Palaniswamy, G. S., Smith, E. E., Shanley, C. A., Wang, B., Orme, I. M., Basaraba, R. J., DuTeau, N. M., Ordway, D.: Post-exposure vaccination against Mycobacterium tuberculosis. Tuberculosis (Edinb) 89, 142148 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Husain, A. A., Daginawala, H. F., Singh, L., Kashyap, R. S.: Current perspective in tuberculosis vaccine development for high TB endemic regions. Tuberculosis (Edinb) 98, 149158 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Voskuil, M. I., Schnappinger, D., Visconti, K. C., Harrell, M. I., Dolganov, G. M., Sherman, D. R., Schoolnik, G. K.: Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198, 705713 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Rustad, T. R., Harrell, M. I., Liao, R., Sherman, D. R.: The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3, e1502 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Singh, S., Saraav, I., Sharma, S.: Immunogenic potential of latency associated antigens against Mycobacterium tuberculosis. Vaccine 32, 712716 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Roupie, V., Romano, M., Zhang, L., Korf, H., Lin, M. Y., Franken, K. L., Ottenhoff, T. H., Klein, M. R., Huygen, K.: Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 75, 941949 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Chauhan, P., Jain, R., Dey, B., Tyagi, A. K.: Adjunctive immunotherapy with α-crystallin based DNA vaccination reduces Tuberculosis chemotherapy period in chronically infected mice. Sci Rep 3, 1821 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Commandeur, S., Lin, M. Y., van Meijgaarden, K. E., Friggen, A. H., Franken, K. L., Drijfhout, J. W., Korsvold, G. E., Oftung, F., Geluk, A., Ottenhoff, T. H.: Double- and monofunctional CD4(+) and CD8(+) T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol 41, 29252936 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pathan, A. A., Wilkinson, K. A., Klenerman, P., McShane, H., Davidson, R. N., Pasvol, G., Hill, A. V., Lalvani, A.: Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: Associations with clinical disease state and effect of treatment. J Immunol 167, 52175225 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Behar, S. M., Woodworth, J. S., Wu, Y.: Next generation: Tuberculosis vaccines that elicit protective CD8+ T cells. Expert Rev Vaccines 6, 441456 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    van Pinxteren, L. A., Cassidy, J. P., Smedegaard, B. H., Agger, E. M., Andersen, P.: Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 30, 36893698 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Flynn, J. L., Chan, J.: Immunology of tuberculosis. Annu Rev Immunol 19, 93129 (2001).

  • 18.

    Gutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., Deretic, V.: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753766 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Munz, C.: Antigen processing for MHC class II presentation via autophagy. Front Immunol 3, 9 (2012).

  • 20.

    Itakura, E., Kishi-Itakura, C., Mizushima, N.: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 12561269 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Munz, C.: Antigen processing via autophagy – Not only for MHC class II presentation anymore? Curr Opin Immunol 22, 8993 (2010).

  • 22.

    Moradi, J., Tabrizi, M., Izad, M., Mosavari, N., Feizabadi, M.M.: Designing a novel multi-epitope DNA based vaccine against tuberculosis: In silico approach. Jundishapur J Microbiol 10, e43950 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Ernst, J. D.: The immunological life cycle of tuberculosis. Nat Rev Immunol 12, 581591 (2012).

  • 24.

    Bruffaerts, N., Huygen, K., Romano, M.: DNA vaccines against tuberculosis. Expert Opin Biol Ther 14, 18011813 (2014).

  • 25.

    Smahel, M., Polakova, I., Duskova, M., Ludvikova, V., Kastankova, I.: The effect of helper epitopes and cellular localization of an antigen on the outcome of gene gun DNA immunization. Gene Ther 21, 225232 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Guapillo, C., Hernandez-Pando, R., Flores-Valdez, M. A.: Multiantigenic subunitary vaccines against tuberculosis in clinical trials: Where do we stand and where do we need to go? Hum Vaccin Immunother 12, 11931195 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Chaitra, M. G., Shaila, M. S., Nayak, R.: Characterization of T-cell immunogenicity of two PE/PPE proteins of Mycobacterium tuberculosis. J Med Microbiol 57, 10791086 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Lunemann, J. D., Munz, C.: Autophagy in CD4+ T-cell immunity and tolerance. Cell Death Differ 16, 7986 (2009).

  • 29.

    Jasenosky, L. D., Scriba, T. J., Hanekom, W. A., Goldfeld, A. E.: T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 264, 7487 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A., Bloom, B. R.: An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178, 22492254 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hu, H., Huston, G., Duso, D., Lepak, N., Roman, E., Swain, S. L.: CD4(+) T cell effectors can become memory cells with high efficiency and without further division. Nat Immunol 2, 705710 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Sarkar, S., Kalia, V., Haining, W. N., Konieczny, B. T., Subramaniam, S., Ahmed, R.: Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J Exp Med 205, 625640 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Millington, K. A., Innes, J. A., Hackforth, S., Hinks, T. S., Deeks, J. J., Dosanjh, D. P., Guyot-Revol, V., Gunatheesan, R., Klenerman, P., Lalvani, A.: Dynamic relationship between IFN-gamma and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J Immunol 178, 52175226 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Day, C. L., Mkhwanazi, N., Reddy, S., Mncube, Z., van der Stok, M., Klenerman, P., Walker, B. D.: Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis 197, 990999 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Lin, M. Y., Geluk, A., Smith, S. G., Stewart, A. L., Friggen, A. H., Franken, K. L., Verduyn, M. J., van Meijgaarden, K. E., Voskuil, M. I., Dockrell, H. M., Huygen, K., Ottenhoff, T. H., Klein, M. R.: Lack of immune responses to Mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination. Infect Immun 75, 35233530 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Openshaw, P., Murphy, E. E., Hosken, N. A., Maino, V., Davis, K., Murphy, K., O’Garra, A.: Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J Exp Med 182, 13571367 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Wu, C. Y., Kirman, J. R., Rotte, M. J., Davey, D. F., Perfetto, S. P., Rhee, E. G., Freidag, B. L., Hill, B. J., Douek, D. C., Seder, R. A.: Distinct lineages of T(H)1 cells have differential capacities for memory cell generation in vivo. Nat Immunol 3, 852858 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Stockinger, B., Bourgeois, C., Kassiotis, G.: CD4+ memory T cells: Functional differentiation and homeostasis. Immunol Rev 211, 3948 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Kagina, B. M., Abel, B., Scriba, T. J., Hughes, E. J., Keyser, A., Soares, A., Gamieldien, H., Sidibana, M., Hatherill, M., Gelderbloem, S., Mahomed, H., Hawkridge, A., Hussey, G., Kaplan, G., Hanekom, W. A.: Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guerin vaccination of newborns. Am J Respir Crit Care Med 182, 10731079 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Couper, K. N., Blount, D. G., Riley, E. M.: IL-10: The master regulator of immunity to infection. J Immunol 180, 57715777 (2008).

  • 41.

    Biedermann, T., Zimmermann, S., Himmelrich, H., Gumy, A., Egeter, O., Sakrauski, A. K., Seegmuller, I., Voigt, H., Launois, P., Levine, A. D., Wagner, H., Heeg, K., Louis, J. A., Rocken, M.: IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2, 10541060 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Smith, S. M., Klein, M. R., Malin, A. S., Sillah, J., McAdam, K. P., Dockrell, H. M.: Decreased IFN-gamma and increased IL-4 production by human CD8(+) T cells in response to Mycobacterium tuberculosis in tuberculosis patients. Tuberculosis (Edinb) 82, 713 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Rook, G. A., Hernandez-Pando, R., Dheda, K., Teng Seah, G.: IL-4 in tuberculosis: Implications for vaccine design. Trends Immunol 25, 483488 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Lowrie, D. B., Tascon, R. E., Bonato, V. L., Lima, V. M., Faccioli, L. H., Stavropoulos, E., Colston, M. J., Hewinson, R. G., Moelling, K., Silva, C. L.: Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269271 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Silva, R. A., Pais, T. F., Appelberg, R.: Blocking the receptor for IL-10 improves antimycobacterial chemotherapy and vaccination. J Immunol 167, 15351541 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Redford, P. S., Murray, P. J., O’Garra, A.: The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 4, 261270 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Boussiotis, V. A., Tsai, E. Y., Yunis, E. J., Thim, S., Delgado, J. C., Dascher, C. C., Berezovskaya, A., Rousset, D., Reynes, J. M., Goldfeld, A. E.: IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest 105, 13171325 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Brooks, D. G., Lee, A. M., Elsaesser, H., McGavern, D. B., Oldstone, M. B.: IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. J Exp Med 205, 533541 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Harris, J., Master, S. S., De Haro, S. A., Delgado, M., Roberts, E. A., Hope, J. C., Keane, J., Deretic, V.: Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Vet Immunol Immunopathol 128, 3743 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Pitt, J. M., Stavropoulos, E., Redford, P. S., Beebe, A. M., Bancroft, G. J., Young, D. B., O’Garra, A.: Blockade of IL-10 signaling during bacillus Calmette-Guerin vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-gamma and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J Immunol 189, 40794087 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
sumbission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 652 EUR / 812 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 10 0 0
Mar 2021 2 0 0
Apr 2021 4 0 0
May 2021 0 0 0
Jun 2021 2 0 0
Jul 2021 9 0 0
Aug 2021 0 0 0