View More View Less
  • 1 Eötvös Loránd University, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

This study provides a comprehensive microbiological survey of three drinking water networks applying different water treatment processes. Variability of microbial communities was assessed by cultivation-based [nitrifying, denitrifying most probable number (MPN) heterotrophic plate count] and sequence-aided terminal restriction fragment length polymorphism (T-RFLP) analysis. The effect of microbial community composition on nitrifying MPN values was revealed. The non-treated well water samples showed remarkable differences to their corresponding distribution systems regarding low plate count, nitrifying MPN, and the composition of microbial communities, which increased and changed, respectively, in distribution systems. Environmental factors, such as pH, total inorganic nitrogen content (ammonium and nitrite concentration), and chlorine dioxide treatment had effect on microbial community compositions. The revealed heterogeneous nitrifying population achieved remarkable nitrification, which occurred at low ammonium concentration (14–51 μM) and slightly alkaline pH 7.7–7.9 in chlorine dioxide disinfected water networks. No change was observed in nitrification-generated nitrate concentration, although nitrate-reducing (and denitrifying) bacteria were present with low MPN and characterized by sequence-aided T-RFLP. The community structures of water samples partially changed in nitrifying enrichments and had influence on the generated nitrifying, especially nitrite-oxidizing MPN regarding the facilitated growth of nitrate-reducing bacteria and even methanogenic archaea beside ammonia-oxidizing microorganisms and nitrite-oxidizing bacteria.

  • 1.

    Homonnay, Z. G., Török, Gy., Makk, J., Brumbauer, A., Major, É., Márialigeti, K., Tóth, E.: Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary. J Basic Microbiol 54, 110 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Gomez-Smith, C. K., Tanb, D. T., Shuaic, D.: Research highlights: Functions of the drinking water microbiome – From treatment to tap. Environ Sci Water Res Technol 2, 245249 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Prest, E. I., Hammes, F., van Loosdrecht, M. C., Vrouwenvelder, J. S.: Biological stability of drinking water: Controlling factors, methods, and challenges. Front Microbiol 7, 45 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W., Liu, W. T.: Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Appl Environ Microbiol 78, 78567865 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Zhang, Y., Love, N., Edwards, M.: Nitrification in drinking water system. Crit Rev Environ Sci Technol 39, 153208 (2009).

  • 6.

    Nicol, G., Schleper, C.: Ammonia-oxidizing Crenarchaeota: Important players in the nitrogen cycle? Trends Microbiol 14, 207212 (2006).

  • 7.

    Daims, H., Lebedeva, E. V., Pjevac, P., Han, P, Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegard, R. H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P. H., Wagner, M.: Complete nitrification by Nitrospira bacteria. Nature 528, 504509 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., Nielsen, P. H., den Camp, H. J. M. O., Kartal, B., Jetten, M. S. M., Lücker, S.: Complete nitrification by a single microorganism. Nat Lett 528, 555559 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Pinto, A. J., Marcus, D. N., Ijaz, U. Z., Bautista-de Lose Santos, Q. M., Dick, G. J., Raskin, L.: Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1, e00054-15 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Junier, P., Molina, V., Dorador, C., Hadas, O., Kim, O.-S., Junier, T., Witzel, K.-P., Imhoff, J. F.: Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Environ Microbiol 85, 425440 (2010).

    • Search Google Scholar
    • Export Citation
  • 11.

    French, E., Kozlowski, J. A., Mukherjee, M., Bullerjahn, G., Bollmann, A.: Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 78, 57735780 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kasuga, I., Nakagaki, H., Kurisu, F., Furumai, H.: Predominance of ammonia-oxidizing archaea on granular activated carbon used in a full-scale advanced drinking water treatment plant. Water Res 44, 50395049 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Wang, H., Proctor, C. R., Edwards, M. A., Pryor, M., Domingo, J. W. S., Ryu, H., Camper, A. K., Olson, A., Pruden, A.: Microbial community response to chlorine conversion in a chloraminated drinking water distribution system. Environ Sci Technol 48, 1062410633 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., Stahl, D. A.: Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nat Lett 461, 976979 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., Oakley, B. B.: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102, 1468314688 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Verhamme, D. T., Prosser, J. I., Nicol, G. W.: Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5, 10671071 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Könneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., Stahl, D. A.: Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543546 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Li, Y., Ding, K., Wen, X., Zhang, B., Shen, B.: A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Nat Sci Rep 6, 23747 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lehtovirta-Morley, L. E., Ross, J., Hink, L., Weber, E. B., Gubry-Rangin, C., Thion, C., Prosser, J. I., Nicol, G. W.: Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microb Ecol 92, 110 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lipponen, M. T. T., Suutari, M. H., Martikainen, P. J.: Occurence of nitrifying bacteria and nitrification in Finnish drinking water distribution system. Water Res 36, 43194329 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Erguder, T. H., Boon, N., Wittebolle, L., Marzorati, M., Verstraete, W.: Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 33, 855869 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Mosier, A. C., Lund, M. B., Francis, C. A.: Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 64, 955963 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    de Boer, W., Kowalchuk, G. A.: Nitrification in acid soils: Micro-organisms and mechanisms. Soil Biol Biochem 33, 853866 (2001).

  • 24.

    Konuma, S., Satoh, H., Mino, T., Matsuo, T.: Comparison of enumeration methods for ammonia-oxidizing bacteria. Water Sci Technol 43, 107114 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Wagner, M., Haider, S.: New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotech 23, 96102 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Zhang, Y., Chen, L., Dai, T., Sun, R., Wen, D.: Ammonia manipulates the ammonia-oxidizing archaea and bacteria in the coastal sediment-water microcosms. Appl Microbiol Biotechnol 99, 64816491 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Tourna, M., Freitag, T. E., Nicol, G. W., Prosser, J. I.: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10, 13571364 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Hirooka, K., Asano, R., Nakai, Y.: Change in the community structure of ammonia-oxidizing bacteria in activated sludge during selective incubation for MPN determination. J Ind Microbiol Biotechnol 36, 679685 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Atlas, R. M.: Handbook of Microbiological Media, 4th Edition. CRC Press, Taylor & Francis Group, Broken Sound Parkway NW, Boca Raton, FL, 2010.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rowe, R., Todd, R., Waide, J.: Microtechnique for most-probable-number analysis. Appl Environ Microbiol 33, 675680 (1977).

  • 31.

    Reasoner, D. J., Geldreich, E. E.: A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 17 (1985).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Borsodi, K. A., Felföldi, T., Máthé, I., Bognár, V., Knáb, M., Krett, G., Jurecska, L., Tóth, M. E., Márialigeti, K.: Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 17, 8798 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Lane, D. J.: 16S/23S rRNA sequencing. In Stackebrandt, E., Goodfellow, M. (eds): Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, UK, 1999, pp 115148.

    • Search Google Scholar
    • Export Citation
  • 34.

    Rotthauwe, J. H., de Boer, W., Liesack, W.: Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiformis C-71. FEMS Microbiol Lett 133, 131135 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W.: Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 19191925 (1990).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K. H., Wagner, M.: In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67, 52735284 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Throbäck, I. N., Enwall, K., Jarvis, Å., Hallin, S.: Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49, 401417 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Culman, S. W., Bukowski, R., Gauch, H. G., Cadillo-Quiroz, H., Buckley, D. H.: T-REX: Software processing and analysis of T-RFLP data. BMC Bioinformatics 10, 171 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hammer, Ř., Harper, D. A. T., Ryan, P. D.: PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4, 9 (2001). Available at http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    • Search Google Scholar
    • Export Citation
  • 40.

    Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Wagner, H.: Vegan: Community ecology package. R package version 2.3-0. (2015). Available at http://CRAN.R-project.org/package=vegan

    • Export Citation
  • 41.

    R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015. Available at https://www.R-project.org/

    • Search Google Scholar
    • Export Citation
  • 42.

    Sambrook, J., Russell, D. W.: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 2001.

  • 43.

    Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., Park, S. C., Jeon, Y. S., Lee, J. H., Yi, H., Won, S., Chun, J.: Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62, 716721 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Tindall, B. J., Rosselló-Mora, R., Busse, H. J., Ludwig, W., Kämpfer, P.: Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60, 249266 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    McGuire, M. J., Lieu, N. I., Pearthree, M. S.: Using chlorite ion to control nitrification. J AWWA 91, 5261 (1999).

  • 46.

    Liu, G., Bakker, G. L., Li, S., Vreeburg, J. H. G., Verberk, J. Q. J. C., Medema, G. J., Liu, W. T., Van Dijk, J. C.: Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: An integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ Sci Technol 48, 54675476 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Okabe, S., Satoh, H., Watanabe, Y.: In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 65, 31823191 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Gupta, P., Sarkar, S., Das, B., Bhattacharjee, S., Tribedi, P.: Biofilm, pathogenesis and prevention – A journey to break the wall: A review. Arch Microbiol 198, 115 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Arp, D. J., Chain, P. S. G., Klotz, M. G.: The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 61, 503528 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Casciotti, K., Ward, B. B.: Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 67, 22132221 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Kindaichi, T., Ito, T., Okabe, S.: Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70, 16411650 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 4 2
Jul 2020 12 0 0
Aug 2020 14 0 0
Sep 2020 11 1 0
Oct 2020 44 0 0
Nov 2020 5 18 5
Dec 2020 0 0 0