View More View Less
  • 1 Óbuda University, Hungary
  • | 2 Semmelweis University, Hungary
  • | 3 National Public Health Institute, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Silver is used extensively in both hospitals and outpatient clinics as a disinfectant coating agent on various devices. Resistance to silver was recently reported as an emerging problem in Enterobacteriaceae. Multidrug-resistant high-risk clones of Klebsiella pneumoniae are common causes of serious healthcare-associated infections worldwide posing a serious threat to patients. In this study, we investigated the capacity of both high-risk (CG14/15 and CG258) and minor clone strains of K. pneumoniae to develop resistance to silver. Resistance was induced in vitro in silver-susceptible but otherwise multidrug-resistant clinical isolates. Genetic alterations in the silver-resistant derivative strains with regard to the silver-susceptible isolates were investigated by whole-genome sequencing. The transferability of high-level resistance to silver was also tested. We demonstrated that the high-level resistance to silver can quickly evolve as a consequence of a single-point mutation either in the cusS gene of the chromosomally encoded CusCFBARS efflux system and/or in the silS gene of the plasmid-encoded Copper Homeostasis and Silver Resistance Island (CHASRI) coding also for a metallic efflux. The minimal inhibitory concentrations (MICs) of the strains increased from 4 mg/L (23.5 μM) AgNO3 to >8,500 mg/L (>50,000 μM) AgNO3 during induction. Harboring the CHASRI proved an important selective asset for K. pneumoniae when exposed to silver. Successful conjugation experiments using Escherichia coli K12 J5-3Rif as recipient showed that high-level silver resistance can transmit between strains of high-risk clones of K. pneumoniae (ST15 and ST11) and isolates from additional species of Enterobacteriaceae. The lack of fitness cost associated with the carriage of the CHASRI in a silver-free environment and the presence of the RelEB toxin–antitoxin system on the conjugative plasmids could advance the dissemination of silver resistance. Our results show that multidrug-resistant high-risk clones of K. pneumoniae are capable of evolving and transmitting high-level resistance to silver. This observation should warrant a more judicious use of silver coated-devices to prevent the extensive dissemination of silver resistance.

  • 1.

    Rice, L. B.: Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis 197, 10791081 (2008).

  • 2.

    Wyres, K. L., Holt, K. E.: Klebsiella pneumoniae population genomics and antimicrobial-resistant clones. Trends Microbiol 24, 944956 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Pitout, J. D., Nordmann, P., Poirel, L.: Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59, 58735884 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Alexander, J. W.: History of the medical use of silver. Surg Infect (Larchmt) 10, 289292 (2009).

  • 5.

    Weber, D. J., Rutala, W. A.: Self-disinfecting surfaces: Review of current methodologies and future prospects. Am J Infect Control 41, 3135 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Sütterlin, S., Dahlö, M., Tellgren-Roth, C., Schaal, W., Melhus, Å.: High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. J Hosp Infect 96, 256261 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Silver, S.: Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27, 341353 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Fouda, M. M.: Antibacterial modification of textiles using nanotechnology. In Bobbaralas V. (ed): A search for antibacterial agents. InTech, Rijeka, Croatia, 2012, pp. 4772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    McDonnell, G., Russell, A. D.: Antiseptics and disinfectants: Activity, action, and resistance. Clin Microbiol Rev 12, 147179 (1999).

  • 10.

    Bondarczuk, K., Piotrowska-Seget, Z.: Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29, 397405 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Staehlin, B. M., Gibbons, J. G., Rokas, A., O’Halloran, T. V., Slot, J. C.: Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in enterobacteria. Genome Biol Evol 8, 811826 (2016).

    • Search Google Scholar
    • Export Citation
  • 12.

    Gudipaty, S. A., Larsen, A. S., Rensing, C., McEvoy, M. M.: Regulation of Cu (I)/Ag (I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 330, 3037 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mijnendonckx, K., Leys, N., Mahillon, J., Silver, S., Van Houdt, R.: Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 26, 609621 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Delmar, J. A., Su, C.-C., Yu, E. W.: Bacterial multidrug efflux transporters. Annu Rev Biophys 43, 93117 (2014).

  • 15.

    Gupta, A., Matsui, K., Lo, J.-F., Silver, S.: Molecular basis for resistance to silver cations in Salmonella. Nat Med 5, 183188 (1999).

  • 16.

    Randall, C. P., Gupta, A., Jackson, N., Busse, D., O’Neill, A. J.: Silver resistance in Gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother 70, 10371046 (2015).

    • Search Google Scholar
    • Export Citation
  • 17.

    Jelenko, C., 3rd: Silver nitrate resistant E. coli: Report of case. Ann Surg 170, 296299 (1969).

  • 18.

    Sütterlin, S., Tano, E., Bergsten, A., Tallberg, A.-B., Melhus, Å.: Effects of silver-based wound dressings on the bacterial flora in chronic leg ulcers and its susceptibility in vitro to silver. Acta Derm Venereol 92, 3439 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    EUCAST: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9, 915 (2003).

    • Search Google Scholar
    • Export Citation
  • 20.

    Tóth, Á., Kocsis, B., Damjanova, I., Kristóf, K., Jánvári, L., Pászti, J., Csercsik, R., Topf, J., Szabó, D., Hamar, P.: Fitness cost associated with resistance to fluoroquinolones is diverse across clones of Klebsiella pneumoniae and may select for CTX-M-15 type extended-spectrum β-lactamase. Eur J Clin Microbiol Infect Dis 33, 837843 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Werner, G., Freitas, A. R., Coque, T. M., Sollid, J. E., Lester, C., Hammerum, A. M., Garcia-Migura, L., Jensen, L. B., Francia, M. V., Witte, W.: Host range of enterococcal vanA plasmids among Gram-positive intestinal bacteria. J Antimicrob Chemother 66, 273282 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Sambrook, J., Russell, D. W.: Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York, 2001, pp. 2344.

    • Search Google Scholar
    • Export Citation
  • 23.

    Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F. M., Larsen, M. V.: Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67, 26402644 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Carattoli, A., Zankari, E., Garcìa-Fernandez, A., Larsen, M. V., Lund, O., Villa, L., Aarestrup, F. M., Hasman, H.: PlasmidFinder and pMLST: In silico detection and typing of plasmids. Antimicrob Agents Chemother 58, 38953903 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jolley, K. A., Maiden, M. C.: BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11, 595606 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Jánvári, L., Damjanova, I., Lázár, A., Rácz, K., Kocsis, B., Urbán, E., Tóth, Á.: Emergence of OXA-162-producing Klebsiella pneumoniae in Hungary. Scand J Infect Dis 46, 320324 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Damjanova, I., Tóth, A., Kenesei, E., Köhalmi, M., Szántai, P., Füzi, M., Pászti, J.: Dissemination of ST274 Klebsiella pneumoniae epidemic clone in newborn and adult hospital settings harbouring SHV-2A or CTX-M-15 type extended spectrum β-lactamases-producing known plasmids. Eur J Microbiol Immunol 1, 223227 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Toth, A., Damjanova, I., Puskás, E., Jánvári, L., Farkas, M., Dobák, A., Böröcz, K., Pászti, J.: Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur J Clin Microbiol Infect Dis 29, 765769 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Damjanova, I., Tóth, Á., Pászti, J., Hajbel-Vékony, G., Jakab, M., Berta, J., Milch, H., Füzi, M.: Expansion and countrywide dissemination of ST11, ST15 and ST147 ciprofloxacin-resistant CTX-M-15-type β-lactamase-producing Klebsiella pneumoniae epidemic clones in Hungary in 2005 – The new ‘MRSAs’? J Antimicrob Chemother 62, 978985 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Damjanova, I., Tóth, Á., Pászti, J., Jakab, M., Milch, H., Bauernfeind, A., Füzi, M.: Epidemiology of SHV-type β-lactamase-producing Klebsiella spp. from outbreaks in five geographically distant Hungarian neonatal intensive care units: Widespread dissemination of epidemic R-plasmids. Int J Antimicrob Agents 29, 665671 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Dutzler, R., Rummel, G., Alberti, S., Hernandez-Alles, S., Phale, P., Rosenbusch, J., Benedi, V., Schirmer, T.: Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure 7, 425434 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Deshpande, L. M., Chopade, B. A.: Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7, 4956 (1994).

  • 33.

    Wei, Y.-Q., Bi, D.-X., Wei, D.-Q., Ou, H.-Y.: Prediction of type II toxin-antitoxin loci in Klebsiella pneumoniae genome sequences. Interdiscip Sci Comput Life Sci 8, 143149 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Finley, P. J., Norton, R., Austin, C., Mitchell, A., Zank, S., Durham, P.: Unprecedented silver resistance in clinically isolated Enterobacteriaceae: Major implications for burn and wound management. Antimicrob Agents Chemother 59, 47344741 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Elkrewi, E., Randall, C. P., Ooi, N., Cottell, J. L., O’neill, A. J.: Cryptic silver resistance is prevalent and readily activated in certain Gram-negative pathogens. J Antimicrob Chemother 72, 30433046 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
submission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 662 EUR / 832 USD
Print + online subscription: 740 EUR / 930 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 14 0 0
Sep 2021 12 0 0
Oct 2021 19 0 0
Nov 2021 21 0 0
Dec 2021 13 0 0
Jan 2022 15 2 2
Feb 2022 0 0 0