View More View Less
  • 1 Dokuz Eylul University, Turkey
  • 2 Aksaray University, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

The typing of non-tuberculous mycobacteria (NTM) is important from a clinical and epidemiological perspective. The polymerase chain reaction-restriction enzyme analysis (PRA) method and DNA sequence analysis method were utilized to target a gene region that codes the 65-kDa heat-shock protein for typing 150 suspected NTM samples isolated from the respiratory tract. Mycobacterium abscessus, Mycobacterium xenopi, Mycobacterium fortuitum, and Mycobacterium peregrinum were most frequently found by both methods. Six isolates that could not be defined by the PRA method were defined as Nocardia cyriacigeorgica, Nocardia abscessus, and Mycobacterium intracellulare by DNA sequence analysis. Discordance between the results of the two methods was observed for only one isolate. The isolate that was defined as Mycobacterium gordonae type 6 by the PRA method was defined as Mycobacterium senegalense by sequence analysis. The PRA method is simple and gives rapid results. Compared with DNA sequence analysis, it gives consistent and reliable results up to a ratio of 90%. DNA sequence analysis is the gold standard method in which all strains can be defined. However, given our laboratory conditions, its disadvantage is that it takes longer to reach a diagnosis than through the PRA method.

  • 1.

    Cousins, D. V., Bastida, R., Cataldi, A., Quse, V., Redrobe, S., Dow, S., Duignan, P., Murray, A., Dupont, C., Ahmed, N., Collins, D. M., Butler, W. R., Dawson, D., Rodrı´guez, D., Loureiro, J., Romano, M. I., Alito, A., Zumarraga, M., Bernardelli, A.: Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol 53, 13051314 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Guglielmetti, L., Mougari, F., Lopes, A., Raskine, L., Cambau, E.: Human infections due to nontuberculous mycobacteria: The infectious diseases and clinical microbiology specialists’ point of view. Future Microbiol 10, 14671483 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Shah, N. M., Davidson, J. A., Anderson, L. F., Lalor, M. K., Kim, J., Thomas, H. L., Lipman, M., Abubakar, I.: Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007–2012. BMC Infect Dis 16, 195 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Piersimoni, C., Scarparo, C.: Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis 15, 13511358 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Griffith, D. E., Aksamit, T., Brown-Elliott, B. A., Catanzaro, A., Daley, C., Gordin, F., Holland, S. M., Horsburgh, R., Huitt, G., Lademarco, M. F., Iseman, M., Oliver, K., Ruoss, S., von Reyn, C. F., Wallace, R. J., Winthrop, K.: An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175, 367416 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Telenti, A., Marchesi, F., Balz, M., Bally, F., Bottger, E. C., Bodmer, T.: Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31, 175178 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Verma, A. K., Kumar, G., Arora, J., Singh, P., Arora, V. K., Myneedu, V. P., Sarin, R.: Identification of mycobacterial species by PCR restriction enzyme analysis of the hsp65 gene an Indian experience. Can J Microbiol 61, 293296 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Tortoli, E.: Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27, 727752 (2014).

  • 9.

    Tortoli, E., Pecorari, M., Fabio, G., Messinò, M., Fabio, A.: Commercial DNA-probes for mycobacteria incorrectly identify a number of less frequently encountered species. J Clin Microbiol 48, 307310 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kim, H., Kim, S. H., Shim, T. S., Kim, M. N., Chae, G. T., Bai, G. H., Park, Y. G., Lee, S. H., Cha, C. Y., Kook, Y. H., Kim, B. J.: Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol 55, 16491656 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    McNabb, A., Eisler, D., Adie, K., Amos, M., Rodrigues, M., Stephens, G., Black, W. A., Isaac-Renton, J.: Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources . J Clin Microbiol 42, 30003011 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Chimara, E., Ferrazoli, L., Ueky, S. Y., Martins, M. C., Durham, A. M., Arbeit, R. D., Leao, S. C.: Reliable identification of mycobacterial species by PCR-restriction enzyme analysis (PRA)-hsp65 in a reference laboratory and elaboration of a sequence-based extended algorithm of PRA-hsp65 patterns. BMC Microbiol 8, 4854 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Sajduda, A., Martin, A., Portaels, F., Palomino, J. C.: hsp65 PCR-restriction analysis (PRA) with capillary electrophoresis in comparison to three other methods for identification of Mycobacterium species. J Microbiol Methods 80, 190197 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gürtler, V., Harford, C., Bywater, J., Mayall, B. C.: Direct identification of slowly growing Mycobacterium species by analysis of the intergenic 16S-23S rDNA spacer region (ISR) using a GelCompar II database containing sequence based optimization for restriction fragment site polymorphisms (RFLPs) for 12 enzymes. J Microbiol Methods 64, 18599 (2006).

    • Search Google Scholar
    • Export Citation
  • 15.

    Ringuet, H., koua-Koffi, C., Honore, S., Varnerot, A., Vincent, V., Berche, P., Gaillard, J. L., Pierre-Audigier, C.: hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol 37, 852857 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Nolte, O., Haag, H., Hafner, B.: A mutation in the 65, 000 Dalton heat shock proteingene, commonly used for molecular identification of non-tuberculous mycobacteria, leads to the misidentification of Mycobacterium malmoense as Mycobacterium marinum. Mol Cell Probes 19, 275277 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Pourahmad, F., Thompson, K. D., Adams, A., Richards, R. H.: Comparative evaluation of polymerase chain reaction–restriction enzyme analysis (PRA) and sequencing of heat shock protein 65 (hsp65) gene for identification of aquatic mycobacteria. J Microbiol Methods 76, 128135 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Özçolpan, O. O., Sürücüoğlu, S., Özkütük, N., Çavuşoğlu, C.: Distribution of nontuberculous mycobacteria isolated from clinical specimens and identified with DNA sequence analysis. Mikrobiyol Bul 49, 484493 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Günaydin, M., Yanik, K., Eroglu, C., Sanic, A., Ceyhan, I., Erturan, Z., Durmaz, R.: Distribution of nontuberculous mycobacteria. Ann Clin Microbiol Antimicrob 12, 33 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Babalık, A., Kuyucu, T., Ordu, E. N., Ernam, D., Partal, M., Köksalan, K.: Non-tuberculous mycobacteria infection: 75 cases. Tuberk Toraks 60, 2031 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Velayati, A. A., Rahideh, S., Nezhad, Z. D., Farnia, P., Mirsaeidi, M.: Nontuberculous mycobacteria in Middle East: Current situation and future challenges. Int J Mycobacteriol 4, 717 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Cook, J. L.: Nontuberculous mycobacteria: Opportunistic environmental pathogens for predisposed hosts. Br Med Bull 96, 4559 (2010).

  • 23.

    Brunello, F., Ligozzi, M., Cristelli, E., Bonora, S., Tortoli, E., Fontana, R.: Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol 39, 27992806 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Oh, W. S., Ko, K. S., Song, J. H., Lee, M. Y., Ryu, S. Y., Taek, S., Kwon, K. T., Lee, J. H., Peck, K. R., Lee, N. Y.: Catheter associated bacteremia by Mycobacterium senegalense in Korea. BMC Infect Dis 5, 107 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Talavlikar, R., Carson, J., Meatherill, B., Desai, S., Sharma, M., Shandro, C., Tyrrell, G. J., Kuhn, S.: Mycobacterium senegalense tissue infection in a child after fish tank exposure. Can J Infect Dis Med Microbiol 22, 101103 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Middleton, A. M., Chadwick, M. V., Gaya, H.: Disinfection of bronchoscopes, contaminated in vitro with Mycobacterium tuberculosis, Mycobacterium and Mycobacterium chelonae in sputum, using buffered peracetic (“Nu-Cidex”) acid solution. J Hosp Infect 37, 137143 (1997).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 19 1 0
Dec 2020 45 0 0
Jan 2021 17 0 0
Feb 2021 16 0 0
Mar 2021 17 0 0
Apr 2021 6 0 0
May 2021 0 0 0