View More View Less
  • 1 Semmelweis University, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

The role of immune system is to protect the organism from the not built-in program-like alterations inside and against the agents penetrating from outside (bacteria, viruses, and protozoa). These functions were developed and formed during the evolution. Considering these functions, the immune system promotes the lengthening of lifespan and helps longevity. However, some immune functions have been conveyed by men to medical tools (e.g., pharmaceuticals, antibiotics, and prevention), especially in our modern age, which help the struggle against microbes, but evolutionarily weaken the immune system. Aging is a gradual slow attrition by autoimmunity, directed by the thymus and regulated by the central nervous system and pineal gland. Considering this, thymus could be a pacemaker of aging. The remodeling of the immune system, which can be observed in elderly people and centenarians, is probably not a cause of aging, but a consequence of it, which helps to suit immunity to the requirements. Oxidative stress also helps the attrition of the immune cells and antioxidants help to prolong lifespan. There are gender differences in the aging of the immune system as well as in the longevity. There is an advantage for women in both cases. This can be explained by hormonal differences (estrogens positively influences both processes); however, social factors are also not excluded. The endocrine disruptor chemicals act similar to estrogens, like stimulating or suppressing immunity and provoking autoimmunity; however, their role in longevity is controversial. There are some drugs (rapamycin, metformin, and selegiline) and antioxidants (as vitamins C and E) that prolong lifespan and also improve immunity. It is difficult to declare that longevity is exclusively dependent on the state of the immune system; however, there is a parallelism between the state of immune system and lifespan. It seems likely that there is not a real decline of immunity during aging, but there is a remodeling of the system according to the claims of senescence. This is manifested in the remaining (sometimes stronger) function of memory cells in contrast to the production and number of the new antigen-reactive naive T-cells.

  • 1.

    Wick, G., Grubeck-Loevenstein, B.: The aging immune system: Primary and secondary alterations of immune reactivity in the elderly. Exp Gerontol 32, 401413 (1997).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    De la Fuente, M.: Role of neuroimmunomodulation in aging. Neuroimmunomodulation 15, 213223 (2008).

  • 3.

    Martinez de Toda, I., Maté, I., Vida, C., Cruces, J., De la Fuente, M.: Immune function parameters as markers of biological age and predictors of longevity. Aging (Albany) 8, 31103119 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Alonso-Fernadez, P., De la Fuente, M.: Role of the immune system in aging and longevity. Curr Aging Sci 4, 78100 (2011).

  • 5.

    Aspinall, R.: Longevity and the immune response. Biogerontology 1, 273278 (2000).

  • 6.

    Gruver, A. L., Hudson, L. L., Sempowski, G. D.: Immunosenescence of aging. J Pathol 211, 144156 (2007).

  • 7.

    Turner, J. E.: Is immunosenescence influenced by our lifetime “dose” of exercise? Biogerontology 17, 581602 (2116).

  • 8.

    Weyand C. M. , Goronzy, J. J.: Aging of the immune system. Mechanisms and therapeutic targets. Ann Am Thorac Soc 13, S422S428 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lehtonen, L., Eskola, J., Vainio, O., Lehtonen, A.: Changes in lymphocyte subsets and immune competence in very advanced age. J Gerontol 45, M108M112 (1990).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pawelec, G.: Does the human immune system become “senescent”? F1000Res 6, 1323 (2017).

  • 11.

    Ongrádi, J., Stercz, B., Kövesdi, V., Vértes, L.: Immunosenescence and vaccination of the elderly, I. Age-related immune impairmant. Acta Microbiol Immunol Hung 56, 199210 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ongrádi, J., Stercz, B., Kövesdi, V., Vértes, L.: Immunosenescence and vaccination of the elderly, II. New strategies to restore age-related immune impairment. Acta Microbiol Immunol Hung 56, 301312 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ongrádi, J., Kövesdi, V.: Factors that may impact on immunosenescence: An appraisal. Immun Ageing 14, 7 (2010).

  • 14.

    Ongrádi, J., Kövesi, V.: Numerical alterations of aging B lymphocyte subsets. Acta Physiol Hung 98, 99104 (2011).

  • 15.

    Weiskopf, D., Weinberger, B., Grubeck-Loebenstein, B.: The aging of the immune system. Transpl Int 22, 10411050 (2009).

  • 16.

    Franceschi, C., Monti, D., Barbieri, D., Salvioli, S., Grassilli, E., Troiano, L., Capri, M., Guido, M., Bonafé, M., Tropea, F., Salomoni, P., Benatti, F., Bellesi, E., Macchioni, S., Anderlini, L., Sansoni, P., Mriotti, S., Wratten, M. L., Tetta, C., Cossarizza, A.: Successful immunosenescence and the remodelling of immune responses with aging. Nephrol Dial Transplant 11, 1825 (1998).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Ginaldi, L., De Martinis, M., D’Ostilio, A, Marini, L., Loreto, M. F., Quaglino, D.: The immune system in elderly: III. Innate immunity. Immunol Res 20, 117126 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Colonna-Romano, G., Bulati, M., Aquino, A., Vitello, S., Lio, D., Candore, G., Caruso, C.: B cell immunosenescence in the elderly and in centenarians. Rejuvenation Res 11, 433439 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Linchan, E., Fitzgerald, D. C.: Ageing and immune system: Focus on macrophages. Eur J Microbiol Immunol 5, 1424 (2015).

  • 20.

    Bauer, M. E.: Chronic stress and immunosenescence: A review. Neuroimmunomodulation 15, 241250 (2008).

  • 21.

    Pinti, M., Nasi, M., Lugli, E., Gibellini, L., Bertoncelli, L., Roat, E., De Biasi, S., Mussini, C., Cossarizza, A.: T cell homeostasis in centenarians: From the thymus to the periphery. Curr Pharm Des 16, 587603 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Monti, D., Ostan, R., Borelli, V., Castellani, G., Franceschi, C.: Inflammaging and human longevity in the omics era. Mech Ageing Dev 165, 129138 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Paolisso, G., Barbieri, M., Bonafé, M., Franceschi, C.: Metabolic age modelling: The lesson from centenarians. Eur J Clin Invest 30, 888894 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ginaldi, L., De Martinis, M., D’Ostilio, A., Marini, L., Loreto, M. F., Corsi, M. P., Quaglino, D.: The immune system in the elderly: I. Specific humoral immunity. Immunol Res 20, 101108 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Fuentes, E., Fuentes, M., Alarcon, M., Palomo, I.: Immune system dysfunction in the elderly. An Acad Bras Cienc 89, 1678 (2017).

  • 26.

    Sansoni, P., Vescovini, R., Fagnoni, F., Biasini, C., Zanni, F., Zanlari, L., Telera, A., Lucchini, G., Passeri, G., Monti, D., Franceschi, C., Passeri, M.: The immune system in extreme longevity. Exp Gerontol 43, 6165 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Dewan, S. K., Zheng, S. B., Xia, S. J., Bill, K.: Senescent remodelling of the immune system and its contribution to the predisposition of the elderly to infections. Chin Med J 125, 33253331 (2012).

    • Search Google Scholar
    • Export Citation
  • 28.

    Minciullo, P. L., Catalano, A., Mandraffino, G., Casciaro, M., Crucitti, A., Maltese, G., Morabito, N., Lasco, A., Gangemi, S., Basile, G.: Inflammaging and anti-inflammaging: The role of cytokines in extreme longevity. Arch Immunol Ther Exp 64, 111126 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    De la Fuente, M.: Effects of antioxidants on immune system ageing. Eur J Clin Nutr 56, 58 (2002).

  • 30.

    Sanz, A., Pamplona, R., Barja, G.: Is the mitochondrial free radical theory intact? Antiox Redox Signal 8, 582599 (2006).

  • 31.

    Hertoghe, T.: The “multiple hormone deficiency” theory of aging: Is human senescence caused mainly by multiple hormone deficiencies? Ann N Y Acad Sci 1057, 448465 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    De la Fuente, M.: Role of the immune system in aging. Immunologia 27, 176191 (2008).

  • 33.

    Ostan, R., Bucci, L., Capri, M., Salvioli, S., Scurti, M., Pini, E., Monti, D., Francheschi, C.: Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation 15, 224240 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Csaba, G.: Thoughts on the cultural evolution of man. Developmental imprinting and transgenerational effect. Riv Biol 100, 461474 (2007).

    • Search Google Scholar
    • Export Citation
  • 35.

    Csaba, G.: Complex multicellular functions at a unicellular eukaryote level: Learning, memory and immunity. Acta Microbiol Immunol Hung 64, 105120 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Francheschi, C., Bonafé, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., De Benedictis, G.: Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908, 244254 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Fougére, B., Boulanger, E., Nourhashémi, F., Guyonnet, S., Cesari, M.: Chronic inflammation: Accelerator of biological aging. J Gerontol A Biol Sci Med 72, 12181225 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Csaba, G.: The immunoendocrine thymus as a pacemaker of lifespan. Acta Microbiol Immunol Hung 63, 139158 (2016).

  • 39.

    Csaba, G.: The role of brain-pineal-thymus system in the determination of lifespan: The autoimmune aging theory. Adv Neuroimmune Biol 6, 139148 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Csaba, G.: The pineal regulation of the immune system: 40 years since the discovery. Acta Microbiol Immunol Hung 60, 7791 (2013).

  • 41.

    Pfister, G., Savino, W.: Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective. Neuroimmunomodulation 15, 351364 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Aspinall, R., Pitts, D., Lapenna, A., Mitchell, W.: Immunity in the elderly: The role of the thymus. J Comp Pathol 142, S111S115 (2010).

  • 43.

    Bodey, B., Bodey, B., Jr., Siegel, S. E., Kaiser, H. E.: Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 11, 421440 (1997).

    • Search Google Scholar
    • Export Citation
  • 44.

    Kincade, P. W., Medina, K. L., Smithson, G.: Sex hormones as negative regulators of lymphopoesis. Immunol Rev 137, 119134 (1994).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Oner, H., Ozan, E.: Effects of gonadal hormones on thymus gland after bilateral ovariectomy and orchidectomy in rats. Arch Androl 48, 115126 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Erlandsson, M. C., Ohlsson, C., Gustafsson, J. A., Carlsten, H.: Role of oestrogen receptors alpha and beta in immune organ development and in oestrogen-mediated effects of thymus. Immunology 103, 1725 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Törnwall, J., Carey, A. B., Fox, R. I., Fox, H. S.: Estrogen in autoimmunity: Expression of estrogen receptors in thymic and autoimmune T cells. J Gend Specif Med 2, 3340 (1999).

    • Search Google Scholar
    • Export Citation
  • 48.

    Csaba, G.: Is there a hormonal regulation of phagocytosis at unicellular and multicellular levels? A critical review. Acta Microbiol Immunol Hung 64, 357372 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Forsberg, J. G.: Short-term and long-term effects of estrogen on lymphoid tissues and lymphoid cells with some remarks on the significance for carcinogenesis. Arch Toxicol 55, 7990 (1984).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Hince, M., Sakkal, S., Vlahos, K., Dudakov, J., Boyd, R., Chedgey, A.: The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 252, 122138 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Olsen, N. J., Kovacs, W. J.: Evidence that androgens modulate human T cell output. J Invest Med 59, 3235 (2011).

  • 52.

    Ahmed, S. A., Talal, N.: Sex hormones and the immune system – Part 2. Animal data. Baillieres Clin Rheumatol 4, 1331 (1990).

  • 53.

    Verthelyi, D.: Sex hormones as immunomodulators in health and disease. Int Immunopharmacol 1, 983993 (2001).

  • 54.

    Hughes, G. C., Clark, E. A.: Regulation of dendritic cells by female sex steroids: Relevance to immunity and autoimmunity. Autoimmunity 40, 470481 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Janssson, L., Holmdahl, R.: Estrogen-mediated immunosuppression in autoimmune diseases. Inflamm Res 47, 290301 (1998).

  • 56.

    Kovats, S., Carreras, E.: Regulation of dendritic cell differentiation and function by estrogen receptor ligands. Cell Immunol 252, 8190 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Jaillon, S., Berthenet, K., Garlanda, C.: Sexual dimorphism in innate immunity. Clin Rev Allergy Immunol (2017). doi:10.1007/s12016-017-8648-x [Epub ahead of print].

    • Search Google Scholar
    • Export Citation
  • 58.

    Dumont-Lagacé, M., St-Pierre, C., Perreault, C.: Sex hormones have pervasive effects on thymic epithelial cells. Sci Rep 5, 12895 (2015).

  • 59.

    Goya, R. G.: Hormones, genetic program and immunosenescence. Exp Clin Immunogenet 9, 188194 (1992).

  • 60.

    Csaba, G.: Hormones in the immune system and their possible role. A critical review. Acta Microbiol Immunol Hung 61, 241260 (2014).

  • 61.

    Leposavic, G., Perisic, M.: Age associated remodeling of thymopoiesis: Role for gonadal hormones and catecholamines. Neuroimmunomodulation 15, 291322 (2008).

    • Search Google Scholar
    • Export Citation
  • 62.

    Csaba, G.: The present and future of human sexuality: Impact of faulty perinatal hormonal imprinting. Sex Med Rev 5, 163169 (2017).

  • 63.

    Csaba, G.: The faulty perinatal hormonal imprinting as functional teratogen. Curr Pediatr Rev 12, 222229 (2016).

  • 64.

    Martin, J. T.: Sexual dimorphism in immune function: The role of prenatal exposure to androgens and estrogens. Eur J Pharmacol 29, 251261 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Pido-Lopez, J., Imami, N., Aspinall, R.: Both age and gender affect thymic output: More recent thymic migrants in females than males as they age. Clin Exp Immunol 125, 409413 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Khan, D., Ansar Ahmed, S.: The immune system is a natural target for estrogen action: Opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol 6, 635 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Aspinall, R., Andrew, D.: Gender-related differences in the rate of age associated thymic atrophy. Dev Immunol 8, 95106 (2001).

  • 68.

    Purtilo, D. T., Sullivan, J. L.: Immunological bases for superior survival of females. Am J Dis Child 133, 12511253 (1979).

  • 69.

    Kiyama, R., Wada-Kiyama, Y.: Estrogenic endocrine disruptors: Molecular mechanism of action. Environ Int 83, 1140 (2015).

  • 70.

    Kharrazian, D.: The potential role of bisphenol A (BPA) pathogenesis in autoimmunity. Autoimmune Dis 2014, 743616 (2014).

  • 71.

    Jochmanova, I., Lazúrová, Z., Rudnay, M., Bacová, I., Mareková, M., Lazúrové, I.:Environmental estrogen bisphenol A and autoimmunity. Lupus 24, 392399 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Jirtle, R. L., Skinner, M. K.: Environmental epigenomics and disease susceptibility. Nat Rev Genet 8, 253262 (2007).

  • 73.

    Schug, T. T., Janesick, A., Blumberg, B., Heindel, J. J.: Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127, 204215 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Khan, D., Ansar Ahmed, S.: Epigenetic regulation of non-lymphoid cells by biphenol A, a model endocrine disrupter: Potential implications for immunoregulation. Front Endocrinol 6, 91 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Csaba, G.: Immunoendocrinology: Faulty hormonal imprinting in the immune system. Acta Microbiol Immunol Hung 61, 89106 (2014).

  • 76.

    Csaba, G.: Effect of endocrine disruptor phytoestrogens on the immune system: Present and future. Acta Microbiol Immunol Hung 65, 114 (2018).

  • 77.

    Dietert, R. R.: Transgenerational epigenetics of endocrine disrupting chemicals. In Tollefsbol, T. (ed): Transgenerational Epigenetics. Academic Press, Cambridge, MA, 2014, pp. 239254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Csaba, G.: Transgenerational effects of perinatal hormonal imprinting. In Tollefsbol, T. (ed): Transgenerational Epigenetics. Academic Press, Cambridge, MA, 2014, pp. 255267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Csaba, G., Inczefi-Gonda, Á.: Anabolic steroid (nandrolone) treatment during adolescence decreases the number of glucocorticoid and estrogen receptors in adult female rats. Horm Metab Res 25, 353355 (1993).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Gaál, A., Csaba, G.: Testosterone and progesterone level alterations in the adult rat after retinoid (retinol or retinoic acid) treatment (imprinting) in neonatal or adolescent age. Horm Metab Res 30, 487489 (1998).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., Welshons, W. V.: Human exposure to bisphenol A (BPA). Reprod Toxicol 24, 139177 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Rubin, B. S.: Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127, 2734 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., Needham, L. L.: Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116, 3944 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Ikezuki, T., Tsutsumi, O., Takay, Y., Kamey, Y., Taketani, Y.: Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17, 28392841 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Vina, J., Borras, C., Abdelaziz, K. M., Garcia-Valles, R., Gomes-Cabrera, M. C.: The free radical theory of aging revisited: The cell signaling theory of aging. Antioxid Redox Signal 19, 779787 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Barja, G.: Free radicals and aging. Trends Neurosci 27, 595600 (2004).

  • 87.

    Knight, J. A.: Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci 30, 145158 (2000).

  • 88.

    Monacelli, F., Acquarone, E., Giannotti, C., Borghi, R., Nencioni, A.: Vitamin C, aging and Alzheimer disease. Nutrients 9, E670 (2017).

  • 89.

    Penn, N. D., Purkins, L., Kelleher, J., Heatley, R. V., Mascle-Taylor, B. H., Belfield, P. W.: The effect of dietary supplementation with vitamins A, C, and E on cell-mediated immune function in elderly long-stay patients: A randomized controlled trial. Age Ageing 20, 169174 (1991).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Seraffini, M.: Dietary vitamin E and T cell-mediated function in the elderly: Effectiveness and mechanism of action. Int J Dev Neurosci 18, 401410 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Beharka, A., Reedican, S., Leka, L., Meydani, S. M.: Vitamin E status and immune function. Methods Enzymol 282, 247263 (1997).

  • 92.

    Han, S. N., Adolfsson, O., Lee, C. K., Prolla, T. A., Ordovas, J., Meydani, S. N.: Age and vitamin E-induced changes in gene expression profiles of T cells. J Immunol 177, 60526061 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Moriguchi, S.: The role of vitamin E in T-cell differentiation and the decrease of cellular immunity with aging. Biofactors 7, 7786 (1998).

  • 94.

    Moriguchi, S., Kaneyasu, M.: Role of vitamin E in immune system. J Clin Biochem Nutr 34, 97109 (2003).

  • 95.

    Wu, D., Meydani, S. N.: Age associated changes in immune inflammatory responses: Impact of vitamin E intervention. J Leukoc Biol 84, 900914 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Wu, D., Meydani, S. N.: Age-associated changes in immune function: Impact of vitamin E intervention and underlying mechanisms. Endocr Metab Immune Disord Drug Targets 14, 283289 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Meydani, S. N., Barklund, M. P., Liu, S., Meydani, M., Miller, R. A., Cannon, J. G., Morrow, F. D., Rocklin, R., Blumberg, J. B.: Vitamin E supplementation enhances cell-medited immunity in healthy elderly subjects. Am J Clin Nutr 52, 557563 (1990).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Moriguchi, S., Muraga, M.: Vitamin E and immunity. Vitam Horm 59, 315336 (2000).

  • 99.

    Castellani, M. L., Shaik-Dhastagirisaheb, Y. B., Tripodi, D., Anogeinaki, A., Felaco, P., Toniato, E., De Lutiis, M. A., Fulchen, M., Teté, S., Galzio, R., Salini, V., Caraffa, A., Antinolfi, P., Frydas, I., Sabatino, G., Kempurai, D.: Interrelationship between vitamins and cytokines in immunity. J Biol Regul Homeost Agents 24, 385390 (2010).

    • Search Google Scholar
    • Export Citation
  • 100.

    Goncalves de Carvalho, C. M., Ribeiro, S. M.: Aging, low-grade systemic inflammation and vitamin D: A mini-review. Eur J Clin Nutr 71, 434440 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Yang, Y., Ren, C., Zhang, Y., Wu, X.: Ginseng: An nonnegligable natural remedy for healthy aging. Aging Dis 8, 708720 (2017).

  • 102.

    Knoll, J., Miklya, I.: Longevity study with low doses of selegiline (-)-deprenyl and (2R)-(1-benzofuran-2-yl)-N-propylpentane-2-amine (BPAP). Life Sci 167, 3238 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Müller, T. H., Kuhn, W., Krüger, R., Przuntek, H.: Selegiline as immunostimulant – A novel mechanism of action? J Neural Transm 52, 321328 (1998).

    • Search Google Scholar
    • Export Citation
  • 104.

    Thyagarajan, S., Madden, K. S., Boehm, G. W., Stevens, S. Y., Felten, D. L., Bellinger, D. L.: L-Deprenyl reverses age-associated decline in splenic norepinephrine, interleukin-2 and interferon-y production in old female F344 rats. Neuroimmunomodulation 20, 7278 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Bravo-San Pedro, J. M., Senovilla, L.: Immunostimulatory activity of lifespan-extending agents. Aging (Albany) 5, 793801 (2013).

  • 106.

    Mannick, J. B., Del Giudice, G., Lattanzi, M., Valiante, N. M., Praestgaard, J., Huang, B., Lonetto, M. A., Maecker, H. T., Kovarik, J., Carson, S., Glass, D. J., Klickstein, L. B.: mTOR inhibition improves immune function in the elderly. Sci Transl Med 6, 268ra179 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Blagosklonny, M. V.: Rejuventing immunity: “Anti-aging drug today” eight yers later. Oncotarget 6, 1940519412 (2015).

  • 108.

    Blagosklonny, M. V.: Rapamycin and quasi-programmed aging: Four years later. Cell Cycle 9, 18591862 (2010).

  • 109.

    Blagosklonny, M. V.: From rapalogs to anti-aging formula. Oncotarget 8, 3549235507 (2017).

  • 110.

    Anisimov, V. N.: Metformin for aging and cancer prevention. Aging 2, 760774 (2010).

  • 111.

    Bashmakov, Y. K., Petyaev, I. M.: Old drug acquires new target: Metformin and SIRT1. J Diabetes Metab 2, 107e (2011).

  • 112.

    Anisimov, V. N.: Metformin: Do we finally have an anti-aging drug? Cell Cycle 12, 34833489 (2013).

  • 113.

    Vaiserman, A. M., Lushchak, O. V., Koliada, A. K.: Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 31, 935 (2016).

  • 114.

    Ito, K., Colley, T., Mercado, N.: Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis 7, 641652 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Bektas, A., Schurman, S. H., Sen, R., Ferrucci, L.: Human T cell immunosenescence and inflammation in aging. J Leukoc Biol 102, 977988 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Csaba, G.: The role of endocrine disruptors in future human evolution: The ED-exohormone system. Theor Biol Forum (2018). [Epub ahead of print].

    • Search Google Scholar
    • Export Citation
  • 117.

    Csaba, G.: Faulty perinatal hormonal imprinting caused by exogeneous vitamin D – Dangers and problems. Austin J Nurtr Food Sci 4, 10751078 (2016).

    • Search Google Scholar
    • Export Citation
  • 118.

    Csaba, G.: Vitamin-caused faulty perinatal hormonal imprinting and its consequences in adult age. Physiol Int 104, 217225 (2017).

 

The author instruction is available in PDF.
Please, download the file from HERE

Senior editors

Editor-in-Chief: Prof. Dóra Szabó (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Managing Editor: Dr. Béla Kocsis (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Co-editor: Dr. Andrea Horváth (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)

Editorial Board

  • Prof. Éva ÁDÁM (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Sebastian AMYES (Department of Medical Microbiology, University of Edinburgh, Edinburgh, UK.)
  • Dr. Katalin BURIÁN (Institute of Clinical Microbiology University of Szeged, Szeged, Hungary; Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary.)
  • Dr. Orsolya DOBAY (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Ildikó Rita DUNAY (Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany)
  • Prof. Levente EMŐDY(Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.)
  • Prof. Anna ERDEI (Department of Immunology, Eötvös Loránd University, Budapest, Hungary, MTA-ELTE Immunology Research Group, Eötvös Loránd University, Budapest, Hungary.)
  • Prof. Éva Mária FENYŐ (Division of Medical Microbiology, University of Lund, Lund, Sweden)
  • Prof. László FODOR (Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary)
  • Prof. József KÓNYA (Department of Medical Microbiology, University of Debrecen, Debrecen, Hungary)
  • Prof. Yvette MÁNDI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Károly MÁRIALIGETI (Department of Microbiology, Eötvös Loránd University, Budapest, Hungary)
  • Prof. János MINÁROVITS (Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary)
  • Prof. Béla NAGY (Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary.)
  • Prof. István NÁSZ (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Kristóf NÉKÁM (Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary.)
  • Dr. Eszter OSTORHÁZI (Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary)
  • Prof. Rozália PUSZTAI (Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary)
  • Prof. Peter L. RÁDY (Department of Dermatology, University of Texas, Houston, Texas, USA)
  • Prof. Éva RAJNAVÖLGYI (Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary)
  • Prof. Ferenc ROZGONYI (Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary)
  • Prof. Zsuzsanna SCHAFF (2nd Department of Pathology, Semmelweis University, Budapest, Hungary)
  • Prof. Joseph G. SINKOVICS (The Cancer Institute, St. Joseph’s Hospital, Tampa, Florida, USA)
  • Prof. Júlia SZEKERES (Department of Medical Biology, University of Pécs, Pécs, Hungary.)
  • Prof. Mária TAKÁCS (National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary.)
  • Prof. Edit URBÁN (Department of Medical Microbiology and Immunology University of Pécs, Pécs, Hungary; Institute of Translational Medicine, University of Pécs, Pécs, Hungary.)

 

Editorial Office:
Akadémiai Kiadó Zrt.
Budafoki út 187-187, A/3, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Microbiologica et Immunologica Hungarica
Institute of Medical Microbiology
Semmelweis University
P.O. Box 370
H-1445 Budapest, Hungary
Phone: + 36 1 459 1500 ext. 56101
Fax: (36 1) 210 2959
E-mail: amih@med.semmelweis-univ.hu

 Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Global Health
  • Index Medicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • SCOPUS
  • Science Citation Index Expanded
2020  
Total Cites 662
WoS
Journal
Impact Factor
2,048
Rank by Immunology 145/162(Q4)
Impact Factor Microbiology 118/137 (Q4)
Impact Factor 1,904
without
Journal Self Cites
5 Year 0,671
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Immunology 146/174 (Q4)
Citation Indicator  Microbiology 120/142 (Q4)
Citable 42
Items
Total 40
Articles
Total 2
Reviews
Scimago 28
H-index
Scimago 0,439
Journal Rank
Scimago Immunology and Microbiology (miscellaneous) Q4
Quartile Score Medicine (miscellaneous) Q3
Scopus 438/167=2,6
Scite Score  
Scopus General Immunology and Microbiology 31/45 (Q3)
Scite Score Rank  
Scopus 0,760
SNIP
Days from  225
sumbission
to acceptance
Days from  118
acceptance
to publication
Acceptance 19%
Rate

2019  
Total Cites
WoS
485
Impact Factor 1,086
Impact Factor
without
Journal Self Cites
0,864
5 Year
Impact Factor
1,233
Immediacy
Index
0,286
Citable
Items
42
Total
Articles
40
Total
Reviews
2
Cited
Half-Life
5,8
Citing
Half-Life
7,7
Eigenfactor
Score
0,00059
Article Influence
Score
0,246
% Articles
in
Citable Items
95,24
Normalized
Eigenfactor
0,07317
Average
IF
Percentile
7,690
Scimago
H-index
27
Scimago
Journal Rank
0,352
Scopus
Scite Score
320/161=2
Scopus
Scite Score Rank
General Immunology and Microbiology 35/45 (Q4)
Scopus
SNIP
0,492
Acceptance
Rate
16%

 

Acta Microbiologica et Immunologica Hungarica
Publication Model Online only Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 652 EUR / 812 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Microbiologica et Immunologica Hungarica
Language English
Size A4
Year of
Foundation
1954
Publication
Programme
2021 Volume 68
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1217-8950 (Print)
ISSN 1588-2640 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 48 2 0
Mar 2021 123 1 3
Apr 2021 88 2 3
May 2021 65 1 2
Jun 2021 38 0 0
Jul 2021 35 0 0
Aug 2021 0 0 0