When the problem with carbapenem-resistant Enterobacteriaceae (CRE) increases, the older antimicrobial agents such as colistin and fosfomycin are used for the treatment of these infections. In this study, the broth microdilution method for colistin and the agar dilution method for fosfomycin were used for a total of 147 multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of CRE. The study included Klebsiella pneumoniae (91.16%), Escherichia coli (7.48%), Enterobacter cloacae (0.68%), and Serratia marcescens (0.68%). All these strains produce various types of carbapenemase, including OXA-48, NDM, and KPC. Some of these strains also have three different carbapenemase mechanisms, including OXA-48 (78.23%), NDM (2.04%), and KPC (0.68%) or OXA-48 and NDM (10.88%), or OXA-48 and KPC (0.68%). About 76.19% of the strains and 67.35% of the strains were resistant for colistin and fosfomycin, respectively. A total of 21 out of 35 colistin-susceptible strains were found to be susceptible to fosfomycin. This study showed that the resistance rates of colistin and fosfomycin are high. The MDR and XDR strains of CRE are spreading in our region and thus a monitoring system for CRE should be followed. Moreover, the applicability of antimicrobial stewardship programs should be increased in all inpatient and outpatient settings.
Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T., Daikos, G. L.: Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin Microbiol Rev 25, 682–707 (2012).
WHO Regional Office for Europe: Central Asian and Eastern European Surveillance of Antimicrobial Resistance Annual Report 2016. WHO Regional Office for Europe, Copenhagen, Denmark, 2016.
Poirel, L., Heritier, C., Tolün, V., Nordmann, P.: Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48, 15–22 (2004).
Yıldız, S. S., Kaşkatepe, B., Avcıküçük, H., Öztürk, Ş.: Performance of CarbaNP and CIM tests in OXA-48 carbapenemase-producing Enterobacteriaceae. Acta Microbiol Immunol Hung 64, 9–16 (2017).
Falagas, M. E., Grammatikos, A. P., Michalopoulos, A.: Potential of old generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 6, 593–600 (2008).
Yamamoto, M., Pop-Vicas, A. E.: Treatment for infections with carbapenem-resistant Enterobacteriaceae: What options do we still have? Crit Care 18, 229–37 (2014).
Palacios-Baena, Z. R., Gutiérrez-Gutiérrez, B., Calbo, E., Almirante, B., Viale, P., Oliver, A., Pintado, V., Gasch, O., Martínez-Martínez, L., Pitout, J., Akova, M., Peña, C., Molina Gil-Bermejo, J., Hernández, A., Venditti, M., Prim, N., Bou, G., Tacconelli, E., Tumbarello, M., Hamprecht, A., Giamarellou, H., Almela, M., Pérez, F., Schwaber, M. J., Bermejo, J., Lowman, W., Hsueh, P. R., Paño-Pardo, J. R., Torre-Cisneros, J., Souli, M., Bonomo, R. A., Carmeli, Y., Paterson, D. L., Pascual, Á., Rodríguez-Baño, J., Spanish Network for Research in Infectious Diseases (REIPI)/European Study Group of Bloodstream Infections and Sepsis (ESGBIS)/INCREMENT Group: Empiric therapy with carbapenem-sparing regimens for bloodstream infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: Results from the INCREMENT cohort. Clin Infect Dis 65, 1615–1623 (2017).
Livermore, D. M., Warner, M., Mushtaq, S., Doumith, M., Zhang, J., Woodford, N.: What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37, 415–419 (2011).
EUCAST: EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance Version 2.0. Available at http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v2.0_20171211
Schechner, V., Straus-Robinson, K., Schwartz, D., Pfeffer, I., Tarabeia, J., Moskovich, R., Chmelnitsky, I., Schwaber, M. J., Carmeli, Y., Navon-Venezia, S.: Evaluation of PCR-based testing for surveillance of KPC-producing carbapenem resistant members of the Enterobacteriaceae family. J Clin Microbiol 47, 3261–3265 (2009).
Mendes, R. E., Kiyota, K. A., Monteiro, J., Castanheira, M., Andrade, S. S., Gales, A. C., Pignatari, A. C., Tufik, S.: Rapid detection and identification of metallo-beta-lactamase encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45, 544–547 (2007).
Biendo, M., Canarelli, B., Thomas, D., Rousseau, F., Hamdad, F., Adjide, C., Laurans, G., Eb, F.: Successive emergence of extended-spectrum beta-lactamase producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital. J Clin Microbiol 46, 1037–1044 (2008).
Poirel, L., Dortet, L., Bernabeu, S., Nordmann, P.: Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother 55, 5403–5407 (2011).
ISO 20776-1:2006: Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices – Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. ISO, Geneva, Switzerland, 2006.
European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters Version 8.1, valid from 2018-05-15. Available at http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf
Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard (8th ed.). CLSI document M7–A8. Clinical and Laboratory Standards Institute, Wayne, PA, 2009.
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID): EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect 6, 509–515 (2000).
Guclu, E., Ogutlu, A., Karabay, O., Demirdal, T., Erayman, I., Hosoglu, S., Turhan, V., Erol, S., Oztoprak, N., Batirel, A., Altay, F. A., Kaya, G., Karahocagil, M., Sozen, H., Yildirim, M., Kocak, F., Teker, B.: Antibiotic consumption in Turkish hospitals; a multi-centre point prevalence study. J Chemother 29, 19–24 (2017).
Di Pilato, V., Arena, F., Tascini, C., Cannatelli, A., Henrici De Angelis, L., Fortunato, S., Giani, T., Menichetti, F., Rossolini, G. M.: mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother 60, 5612–5615 (2016).
Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., Malhotra-Kumar, S.: Identification of a novel plasmid mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 21, 1–6 (2016).
Sarı, A. N., Süzük, S., Karatuna, O., Öğünç, D., Karakoç, A. E., Çizmeci, Z., Alışkan, H. E., Cömert, F., Bakıcı, M. Z., Akpolat, N., Çilli, F. F., Zer, Y., Karataş, A., Akgün Karapınar, B., Bayramoğlu, G., Özdamar, M., Kalem, F., Delialioğlu, N., Aktaş, E., Yılmaz, N., Gürcan, Ş., Gülay, Z.: Results of a multicenter study investigating plasmid mediated colistin resistance genes (mcr-1 and mcr-2) in clinical Enterobacteriaceae isolates from Turkey. Mikrobiyol Bull 51, 299–303 (2017).
Karageorgopoulos, D. E., Wang, R., Yu, X. H., Falagas, M. E.: Fosfomycin: Evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 67, 255–268 (2012).
Qamar, S., Shaheen, N., Shakoor, S., Farooqi, J., Jabeen, K., Hasan, R.: Frequency of colistin and fosfomycin resistance in carbapenem-resistant Enterobacteriaceae from a tertiary care hospital in Karachi. Infect Drug Resist 10, 231–236 (2017).
Mezzatesta, M. L., La Rosa, G., Maugeri, G., Zingali, T., Caio, C., Novelli, A., Stefani, S.: In vitro activity of fosfomycin trometamol and other oral antibiotics against multidrug-resistant uropathogens. Int J Antimicrob Agents 49, 763–766 (2017).
Kaase, M., Szabados, F., Anders, A., Gatermann, S. G.: Fosfomycin susceptibility in carbapenem-resistant Enterobacteriaceae from Germany. J Clin Microbiol 52, 1893–1897 (2014).
Pfeifer, Y., Schlatterer, K., Engelmann, E., Schiller, R. A., Frangenberg, H. R., Stiewe, D., Holfelder, M., Witte, W., Nordmann, P., Poirel, L.: Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother 56, 2125–2128 (2012).