View More View Less
  • 1 Ministry of Health, Turkey
  • 2 Ankara University, Turkey
  • 3 Ankara Training and Research Hospital, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

When the problem with carbapenem-resistant Enterobacteriaceae (CRE) increases, the older antimicrobial agents such as colistin and fosfomycin are used for the treatment of these infections. In this study, the broth microdilution method for colistin and the agar dilution method for fosfomycin were used for a total of 147 multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of CRE. The study included Klebsiella pneumoniae (91.16%), Escherichia coli (7.48%), Enterobacter cloacae (0.68%), and Serratia marcescens (0.68%). All these strains produce various types of carbapenemase, including OXA-48, NDM, and KPC. Some of these strains also have three different carbapenemase mechanisms, including OXA-48 (78.23%), NDM (2.04%), and KPC (0.68%) or OXA-48 and NDM (10.88%), or OXA-48 and KPC (0.68%). About 76.19% of the strains and 67.35% of the strains were resistant for colistin and fosfomycin, respectively. A total of 21 out of 35 colistin-susceptible strains were found to be susceptible to fosfomycin. This study showed that the resistance rates of colistin and fosfomycin are high. The MDR and XDR strains of CRE are spreading in our region and thus a monitoring system for CRE should be followed. Moreover, the applicability of antimicrobial stewardship programs should be increased in all inpatient and outpatient settings.

  • 1.

    Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T., Daikos, G. L.: Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clin Microbiol Rev 25, 682707 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    WHO Regional Office for Europe: Central Asian and Eastern European Surveillance of Antimicrobial Resistance Annual Report 2016. WHO Regional Office for Europe, Copenhagen, Denmark, 2016.

    • Search Google Scholar
    • Export Citation
  • 3.

    Poirel, L., Heritier, C., Tolün, V., Nordmann, P.: Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48, 1522 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Yıldız, S. S., Kaşkatepe, B., Avcıküçük, H., Öztürk, Ş.: Performance of CarbaNP and CIM tests in OXA-48 carbapenemase-producing Enterobacteriaceae. Acta Microbiol Immunol Hung 64, 916 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Falagas, M. E., Grammatikos, A. P., Michalopoulos, A.: Potential of old generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 6, 593600 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Yamamoto, M., Pop-Vicas, A. E.: Treatment for infections with carbapenem-resistant Enterobacteriaceae: What options do we still have? Crit Care 18, 22937 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Palacios-Baena, Z. R., Gutiérrez-Gutiérrez, B., Calbo, E., Almirante, B., Viale, P., Oliver, A., Pintado, V., Gasch, O., Martínez-Martínez, L., Pitout, J., Akova, M., Peña, C., Molina Gil-Bermejo, J., Hernández, A., Venditti, M., Prim, N., Bou, G., Tacconelli, E., Tumbarello, M., Hamprecht, A., Giamarellou, H., Almela, M., Pérez, F., Schwaber, M. J., Bermejo, J., Lowman, W., Hsueh, P. R., Paño-Pardo, J. R., Torre-Cisneros, J., Souli, M., Bonomo, R. A., Carmeli, Y., Paterson, D. L., Pascual, Á., Rodríguez-Baño, J., Spanish Network for Research in Infectious Diseases (REIPI)/European Study Group of Bloodstream Infections and Sepsis (ESGBIS)/INCREMENT Group: Empiric therapy with carbapenem-sparing regimens for bloodstream infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: Results from the INCREMENT cohort. Clin Infect Dis 65, 16151623 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Livermore, D. M., Warner, M., Mushtaq, S., Doumith, M., Zhang, J., Woodford, N.: What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int J Antimicrob Agents 37, 415419 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    EUCAST: EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance Version 2.0. Available at http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_v2.0_20171211

    • Search Google Scholar
    • Export Citation
  • 10.

    Schechner, V., Straus-Robinson, K., Schwartz, D., Pfeffer, I., Tarabeia, J., Moskovich, R., Chmelnitsky, I., Schwaber, M. J., Carmeli, Y., Navon-Venezia, S.: Evaluation of PCR-based testing for surveillance of KPC-producing carbapenem resistant members of the Enterobacteriaceae family. J Clin Microbiol 47, 32613265 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mendes, R. E., Kiyota, K. A., Monteiro, J., Castanheira, M., Andrade, S. S., Gales, A. C., Pignatari, A. C., Tufik, S.: Rapid detection and identification of metallo-beta-lactamase encoding genes by multiplex real-time PCR assay and melt curve analysis. J Clin Microbiol 45, 544547 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Biendo, M., Canarelli, B., Thomas, D., Rousseau, F., Hamdad, F., Adjide, C., Laurans, G., Eb, F.: Successive emergence of extended-spectrum beta-lactamase producing and carbapenemase-producing Enterobacter aerogenes isolates in a university hospital. J Clin Microbiol 46, 10371044 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Poirel, L., Dortet, L., Bernabeu, S., Nordmann, P.: Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother 55, 54035407 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    ISO 20776-1:2006: Clinical laboratory testing and in vitro diagnostic test systems – Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices – Part 1: Reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. ISO, Geneva, Switzerland, 2006.

    • Search Google Scholar
    • Export Citation
  • 15.

    European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters Version 8.1, valid from 2018-05-15. Available at http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf

    • Search Google Scholar
    • Export Citation
  • 16.

    Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard (8th ed.). CLSI document M7–A8. Clinical and Laboratory Standards Institute, Wayne, PA, 2009.

    • Search Google Scholar
    • Export Citation
  • 17.

    European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID): EUCAST Definitive Document E.DEF 3.1, June 2000: Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin Microbiol Infect 6, 509515 (2000).

    • Search Google Scholar
    • Export Citation
  • 18.

    Guclu, E., Ogutlu, A., Karabay, O., Demirdal, T., Erayman, I., Hosoglu, S., Turhan, V., Erol, S., Oztoprak, N., Batirel, A., Altay, F. A., Kaya, G., Karahocagil, M., Sozen, H., Yildirim, M., Kocak, F., Teker, B.: Antibiotic consumption in Turkish hospitals; a multi-centre point prevalence study. J Chemother 29, 1924 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Di Pilato, V., Arena, F., Tascini, C., Cannatelli, A., Henrici De Angelis, L., Fortunato, S., Giani, T., Menichetti, F., Rossolini, G. M.: mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase producing Klebsiella pneumoniae strain of sequence type 512. Antimicrob Agents Chemother 60, 56125615 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., Malhotra-Kumar, S.: Identification of a novel plasmid mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 21, 16 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sarı, A. N., Süzük, S., Karatuna, O., Öğünç, D., Karakoç, A. E., Çizmeci, Z., Alışkan, H. E., Cömert, F., Bakıcı, M. Z., Akpolat, N., Çilli, F. F., Zer, Y., Karataş, A., Akgün Karapınar, B., Bayramoğlu, G., Özdamar, M., Kalem, F., Delialioğlu, N., Aktaş, E., Yılmaz, N., Gürcan, Ş., Gülay, Z.: Results of a multicenter study investigating plasmid mediated colistin resistance genes (mcr-1 and mcr-2) in clinical Enterobacteriaceae isolates from Turkey. Mikrobiyol Bull 51, 299303 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Karageorgopoulos, D. E., Wang, R., Yu, X. H., Falagas, M. E.: Fosfomycin: Evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 67, 255268 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Qamar, S., Shaheen, N., Shakoor, S., Farooqi, J., Jabeen, K., Hasan, R.: Frequency of colistin and fosfomycin resistance in carbapenem-resistant Enterobacteriaceae from a tertiary care hospital in Karachi. Infect Drug Resist 10, 231236 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mezzatesta, M. L., La Rosa, G., Maugeri, G., Zingali, T., Caio, C., Novelli, A., Stefani, S.: In vitro activity of fosfomycin trometamol and other oral antibiotics against multidrug-resistant uropathogens. Int J Antimicrob Agents 49, 763766 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kaase, M., Szabados, F., Anders, A., Gatermann, S. G.: Fosfomycin susceptibility in carbapenem-resistant Enterobacteriaceae from Germany. J Clin Microbiol 52, 18931897 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pfeifer, Y., Schlatterer, K., Engelmann, E., Schiller, R. A., Frangenberg, H. R., Stiewe, D., Holfelder, M., Witte, W., Nordmann, P., Poirel, L.: Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother 56, 21252128 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2020 15 1 1
Oct 2020 31 0 0
Nov 2020 15 2 1
Dec 2020 69 1 1
Jan 2021 85 2 1
Feb 2021 81 0 0
Mar 2021 7 0 0