View More View Less
  • 1 Mahidol University, Thailand
  • 2 Bansomdejchaopraya Rajabhat University, Thailand
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Murine models are suggested as the gold standard for scientific research, but they have many limitations of ethical and logistical concern. Then, the alternative host models have been developed to use in many aspects especially in invertebrate animals. These models are selected for many areas of research including genetics, physiology, biochemistry, evolution, disease, neurobiology, and behavior. During the past decade, Galleria mellonella has been used for several medical and scientific researches focusing on human pathogens. This model commonly used their larvae stage due to their easy to use, non-essential special tools or special technique, inexpensive, short life span, and no specific ethical requirement. Moreover, their innate immune response close similarly to mammals, which correlate with murine immunity. In this review, not only the current knowledge of characteristics and immune response of G. mellonella, and the practical use of these larvae in medical mycology research have been presented, but also the better understanding of their limitations has been provided.

  • 1.

    Committee on Use of Laboratory Animals in Biomedical and Behavioral Research, National Research Council and Institute of Medicine: Use of Laboratory Animals in Biomedical and Behavioral Research. National Academy Press, Washington, DC, 1998.

    • Search Google Scholar
    • Export Citation
  • 2.

    Russell, W. M. S., Burch, R. L.: The Principles of Humane Experimental Technique, Methuen Publishing, London, UK, 1959. Available at http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc

    • Search Google Scholar
    • Export Citation
  • 3.

    UK Government: Annual Statistics of Scientific Procedures on Living Animals Great Britain. Home Office, London, UK, 2014.

  • 4.

    Arvanitis, M., Glavis-Bloom, J., Mylonakis, E.: Invertebrate models of fungal infection. Biochim Biophys Acta 1832, 13781383 (2013).

  • 5.

    Doke, S. K., Dhawale, S. C.: Alternatives to animal testing: A review. Saudi Pharm J 23, 223229 (2015).

  • 6.

    Lagadic, L., Caquet, T.: Invertebrates in testing of environmental chemicals: Are they alternatives? Environ Health Persp 106, 593611 (1998).

  • 7.

    Wilson-Sanders, S. E.: Invertebrate models for biomedical research, testing, and education. ILAR J 52, 126152 (2011).

  • 8.

    Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., Ezekowitz, R. A.: Phylogenetic perspectives in innate immunity. Science 284, 13131318 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lavine, M. D., Strand, M. R.: Insect hemocytes and their role in immunity. Insect Biochem Mol 32, 12951309 (2002).

  • 10.

    Hamilos, G., Samonis, G., Kontoyiannis, D. P.: Recent advances in the use of Drosophila melanogaster as a model to study immunopathogenesis of medically important filamentous fungi. Int J Microbiol 2012, 583792 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Jacobsen, I. D., Grosse, K., Hube, B.: Embryonated chicken eggs as alternative infection model for pathogenic fungi. Methods Mol Biol 845, 487496 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kavanagh, K., Reeves, E. P.: Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28, 101112 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Muhammed, M., Coleman, J. J., Mylonakis, E.: Caenorhabditis elegans: A nematode infection model for pathogenic fungi. Methods Mol Biol 845, 447454 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nathan, S.: New to Galleria mellonella. Virulence 5, 371374 (2014).

  • 15.

    Brennan, M., Thomas, D. Y., Whiteway, M., Kavanagh, K.: Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34, 153157 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cook, S. M., McArthur, J. D.: Developing Galleria mellonella as a model host for human pathogens. Virulence 4, 350353 (2013).

  • 17.

    Fuchs, B. B., O’Brien, E., Khoury, J. B., Mylonakis, E.: Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1, 475482 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mukherjee, K., Altincicek, B., Hain, T., Domann, E., Vilcinskas, A., Chakraborty, T.: Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microb 76, 310317 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Slater, J. L., Gregson, L., Denning, D. W., Warn, P. A.: Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med Mycol 49, 107113 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Scoble, M.: Classification of the Lepidoptera. Oxford University Press, Oxford, UK, 1990, pp. 121158.

  • 21.

    Al-Ghamdi, A.: Survey of honeybee diseases, pests and predators in Saudi Arabia. Thesis, University of Wales, Cardiff, UK, 1990, xix171.

    • Export Citation
  • 22.

    Al-Ghamdi, A., Nuru, A.: Beekeeping in the Kingdom of Saudi Arabia opportunities and challenges. Bee World 90, 5457 (2013).

  • 23.

    Carroll, T.: A Beginners Guide to Beekeeping in Kenya. Baraka Agricultural Training College, Nakuru, Kenya, 2006, pp. 657.

  • 24.

    El-Niweiri, M. A. A.: Survey of the Pests and Diseases of Honeybees in Sudan. UOFK, Khartoum, Sudan, 2015, pp. 2022.

  • 25.

    Hussein, M. H.: Beekeeping in Africa: North, east, northeast and west African countries. Apiacta 1, 3248 (2000).

  • 26.

    Kebede, E., Redda, Y. T., Hagos, Y., Ababelgu, N. A.: Prevalence of wax moth in modern hive with colonies in kafta humera. J Vet Anim Sci 3, 132135 (2015).

    • Search Google Scholar
    • Export Citation
  • 27.

    Keshlaf, M.: Beekeeping in Libya. WASET 8, 3235 (2014).

  • 28.

    Lebedeva, K., Vendilo, N., Ponomarev, V., Pletnev, V., Mitroshin, D.: Identification of pheromone of the greater wax moth Galleria mellonella from the different regions of Russia. IOBC-WPRS Bullet 25, 229232 (2002).

    • Search Google Scholar
    • Export Citation
  • 29.

    Pirk, C. W., Strauss, U., Yusuf, A., Démares, F., Human, H.: Honeybee health in Africa – A review. Apidologie 47, 276300 (2015).

  • 30.

    Rasolofoarivao, H., Clémencet, J., Ravaomanarivo, L. H. R., Razafindrazaka, D., Reynaud, B., Delatte, H.: Spread and strain determination of Varroa destructor (Acari: Varroidae) in Madagascar since its first report in 2010. Exp Appl Acarol 60, 521530 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Shrestha, J. B., Shrestha, K. K.: Beekeeping in Nepal: Problems and potentials: Asian bees and beekeeping, Progress of Research and Development. In Proceedings of the Fourth Asian Apiculture Association International Conference, Kathmandu, Nepal, 2000, pp. 2328.

  • 32.

    Suwannapong, G., Benbow, M. E., Nieh, J. C.: Biology of Thai honeybees: Natural history and threats. In Florio, R. M. (ed): Bees: Biology, Threats and Colonies. Nova Science, Hauppauge, NY, 2012, pp. 198.

    • Search Google Scholar
    • Export Citation
  • 33.

    Burges, H. D.: Control of wax moth: Physical, chemical and biological methods. Bee World 59, 129138 (1978).

  • 34.

    Chang, C. P., Hsieh, F. K.: Morphology and bionomics of Galleria mellonella. Chin J Entomol 12, 121129 (1992).

  • 35.

    Chantawannakul, P., de Guzman, L. I., Li, J., Williams, G. R.: Parasites, pathogens, and pests of honeybees in Asia. Apidologie 47, 124 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ellis, J. D., Graham, J. R., Mortensen, A.: Standard methods for wax moth research. J Apic Res 52, 117 (2013).

  • 37.

    Gulati, R., Kaushik, H. D.: Enemies of honeybees and their management – A review. Agric Rev 25, 189200 (2004).

  • 38.

    Haewoon, O., Young, M., Chang, Y.: Developing periods of damage patterns of combs by the wax moth, Galleria mellonella. J Apicul Res 10, 510 (1995).

    • Search Google Scholar
    • Export Citation
  • 39.

    Harding, C. R., Schroeder, G. N., Collins, J. W., Frankel, G.: Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. Jove J Vis Exp 81, 110 (2013).

    • Search Google Scholar
    • Export Citation
  • 40.

    Paddock, F. B.: The Beemoth or Waxworm. Texas Agricultural Experiment Stations, College Station, TX, 1918, pp. 138.

  • 41.

    Shimanuki, H.: Diseases and pests of honey bees. In Bee Keeping in the United States. Science and Education Administration, United States Department of Agriculture, Washington, DC, 1980, pp. 118128.

    • Search Google Scholar
    • Export Citation
  • 42.

    Smith, T. L.: External morphology of the larva, pupa and adult of the wax moth Galleria mellonella. J Kansas Entomol Soc 38, 287310 (1965).

    • Search Google Scholar
    • Export Citation
  • 43.

    Williams, J. L.: Insects: Lepidoptera (moths). In Morse, R. (ed): Honey Bee Pests, Predators, and Diseases. AI Root Company, Medina, OH, 1997, pp. 121141.

    • Search Google Scholar
    • Export Citation
  • 44.

    Kwadha, C. A., Ong’amo, G. O., Ndegwa, P. N., Raina, S. K., Fombong, A. T.: The biology and control of the greater wax moth Galleria mellonella. Insects 8, 117 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Southwick, E. E.: Bee research digest. Am Bee J 127, 287288 (1987).

  • 46.

    Vongsamanode, S., Srithamjai, S.: Life cycle of greater wax moth (Galleria mellonella L.). In Proceeding of the 30th Kasetsart University Annual Conference: Economics and Business Administration, Social Sciences, Education, Humanities, Environmental, Home Economics, Agro-Industry, Science, Engineering, Bangkok, 1992.

    • Search Google Scholar
    • Export Citation
  • 47.

    Warren, L., Huddleston, P.: Life history of the greater wax moth, Galleria mellonella L., Arkansas. J Kansas Entomol Soc 35, 212216 (1962).

    • Search Google Scholar
    • Export Citation
  • 48.

    Marston, N., Campbell, B., Boldt, P.: Mass Producing Eggs of the Greater Wax Moth, Galleria mellonella. Agricultural Research Service, US Department of Agriculture Technical Bulletin, Washington, DC, 1975, pp. 115.

    • Search Google Scholar
    • Export Citation
  • 49.

    Jafari, R., Goldasteh, S., Afrogheh, S.: Control of the wax moth Galleria mellonella L. (Lepidoptera: Pyralidae) by the male sterile technique (MST). Arch Biol Sci 62, 309313 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Nielsen, R. A., Brister, C.: Greater wax moth: Behavior of larvae. Ann Entomol Soc Am 72, 811815 (1979).

  • 51.

    Chase, R. W.: The length of the life of the larva of the wax moth, Galleria mellonella L., in its different stadia. Trans Wis Acad Sci Arts Lett 20, 263267 (1921).

    • Search Google Scholar
    • Export Citation
  • 52.

    Charriere, J. D., Imdorf, A.: Protection of honey combs from wax moth damage. Am Bee J 139, 627630 (1999).

  • 53.

    Shimanuki, H.: Controlling the Greater Wax Moth: A Pest of Honeycombs: Science and Education Administration, US. United States Department of Agriculture, Washington, DC, 1981, pp. 113.

    • Search Google Scholar
    • Export Citation
  • 54.

    Jones, G., Barabas, A., Elliott, W., Parsons, S.: Female greater wax moths reduce sexual display behaviour in relation to the potential risk of predation by echolocating bats. Behav Ecol 13, 375380 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Nielsen, R. A., Brister, D.: The greater wax moth: Adult behavior. Ann Entomol Soc Am 70, 101103 (1977).

  • 56.

    Spangler, H. G.: Attraction of female lesser wax moths (Lepidoptera: Pyralidae) to male-produced and artificial sounds. J Econ Entomol 77, 346349 (1984).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Spangler, H. G.: Sound production and communication by the greater wax moth (Lepidoptera: Pyralidae). Ann Entomol Soc Am 78, 5461 (1985).

  • 58.

    Spangler, H. G.: Acoustically mediated pheromone release in Galleria mellonella (Lepidoptera: Pyralidae). J Insect Physiol 33, 465468 (1987).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Spangler, H. G.: Sound and the moths that infest beehives. Fla Entomol 71, 467477 (1988).

  • 60.

    Akratanakul, P.: Honeybee Diseases and Enemies in Asia: A Practical Guide. Food & Agriculture Organization, Rome, Italy, 1987, pp. 151.

    • Search Google Scholar
    • Export Citation
  • 61.

    Charnley, A. K.: Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Adv Bot Res 40, 241321 (2003).

  • 62.

    Jarrold, S. L., Moore, D., Potter, U., Charnley, A. K.: The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycol Res 111, 240249 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Moussian, B.: Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol 40, 363375 (2010).

  • 64.

    Ortiz-Urquiza, A., Keyhani, N. O.: Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 4, 357374 (2013).

  • 65.

    Ortiz-Urquiza, A., Keyhani, N. O.: Molecular genetics of Beauveria bassiana infection of insects. Adv Genet 94, 165249 (2016).

  • 66.

    Fearon, D. T.: Seeking wisdom in innate immunity. Nature 388, 323324 (1997).

  • 67.

    Browne, N., Heelan, M., Kavanagh, K.: An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4, 597603 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Tsai, C. J., Loh, J. M., Proft, T.: Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence 7, 214229 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Wojda, I.: Immunity of the greater wax moth Galleria mellonella. Insect Sci 3, 342357 (2016).

  • 70.

    Brehélin, M., Zachary, D.: Insect haemocytes: A new classification to rule out controversy. In Brehelin, M. (ed): Immunity in Invertebrates. Springer Verlag, Berlin, 1986, pp. 3648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    Gupta, A. P.: Cellular elements in hemolymph. In Kerkut, G. (ed): Comprehensive Insect Physiology, Biochemistry, and Pharmacology, 3rd Edition. Pergamon Press, Oxford, UK, 1985, pp. 401451.

    • Search Google Scholar
    • Export Citation
  • 72.

    Ratcliffe, N. A., Gagen, S. J.: Studies on the in vivo cellular reactions of insects: An ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell 9, 7385 (1977).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Altincicek, B., Stötzel, S., Wygrecka, M., Preissner, K. T., Vilcinskas, A.: Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J Immunol 181, 27052712 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Tojo, S., Naganuma, F., Arakawa, K., Yokoo, S.: Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol 46, 11291135 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Halwani, A. E., Niven, D. F., Dunphy, G. B.: Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of Galleria mellonella. J Invertebr Pathol 76, 233241 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Niere, M., Meisslitzer, C., Dettloff, M., Weise, C., Ziegler, M., Wiesner, A.: Insect immune activation by recombinant Galleria mellonella apolipophorin III(1). Biochem Biophys Acta 433, 1626 (1999).

    • Search Google Scholar
    • Export Citation
  • 77.

    Pratt, C. C., Weers, P. M.: Lipopolysaccharide binding of an exchangeable apolipoprotein, apolipophorin III, from Galleria mellonella. J Biol Chem 385, 11131119 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Brown, S. E., Howard, A., Kasprzak, A. B., Gordon, K. H., East, P. D.: The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem Mol Biol 38, 201212 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Brown, S. E., Howard, A., Kasprzak, A. B., Gordon, K. H., East, P. D.: A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol 39, 792800 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Girard, P. A., Boublik, Y., Wheat, C. W., Volkoff, A. N., Cousserans, F., Brehélin, M., Escoubas, J. M.: X-tox: An atypical defensin derived family of immune-related proteins specific to Lepidoptera. Dev Comp Immunol 32, 575584 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 81.

    Kawaoka, S., Katsuma, S., Daimon, T., Isono, R., Omuro, N., Mita, K., Shimada, T.: Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem 67, 8796 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Kim, C. H., Lee, J. H., Kim, I., Seo, S. J., Son, S. M., Lee, K. Y., Lee, I. H.: Purification and cDNA cloning of a cecropin-like peptide from the great wax moth, Galleria mellonella. Mol Cells 17, 262266 (2004).

    • Search Google Scholar
    • Export Citation
  • 83.

    Kopácek, P., Weise, C., Götz, P.: The prophenoloxidase from the wax moth Galleria mellonella: Purification and characterization of the proenzyme. Insect Biochem Mol 25, 10811091 (1995).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Langen, G., Imani, J., Altincicek, B., Kieseritzky, G., Kogel, K. H., Vilcinskas, A.: Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. J Biol Chem 387, 549557 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Lu, A., Zhang, Q., Zhang, J., Yang, B., Wu, K., Xie, W., Luan, Y. X., Ling, E.: Insect prophenoloxidase: The view beyond immunity. Front Physiol 5, 115 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 86.

    Zdybicka-Barabas, A., Mak, P., Jakubowicz, T., Cytrynska, M.: Lysozyme and defense peptides as suppressors of phenoloxidase activity in Galleria mellonella. Arch Insect Biochem 87, 112 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 87.

    Bergin, D., Reeves, E. P., Renwick, J., Wientjes, F. B., Kavanagh, K.: Superoxide production in Galleria mellonella hemocytes: Identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73, 41614170 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Bogdan, C., Röllinghoff, M., Diefenbach, A.: Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12, 6476 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 89.

    Casanova-Torres, Á. M., Goodrich-Blair, H.: Immune signaling and antimicrobial peptide expression in Lepidoptera. Insects 4, 320338 (2013).

  • 90.

    Kounatidis, I., Ligoxygakis, P.: Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2, 114 (2012).

  • 91.

    Mak, P., Chmiel, D., Gacek, G. J.: Antibacterial peptides of the moth Galleria mellonella. Acta Biochim Pol 48, 11911195 (2001).

  • 92.

    Rolff, J., Reynolds, S. E.: Insect Infection and Immunity: Evolution Ecology and Mechanisms. Oxford University Press, Oxford, UK, 2009, pp. 1254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 93.

    Vass, E., Nappi, A. J.: Fruit fly immunity. BioEssays 51, 529535 (2001).

  • 94.

    Nguyen, L. T., Haney, E. F., Vogel, H. J.: The expanding scope of antimicrobial peptide structures and their modes of action. Trends Microbiol 29, 464472 (2011).

    • Search Google Scholar
    • Export Citation
  • 95.

    Scocchi, M., Tossi, A., Gennaro, R.: Proline-rich antimicrobial peptides: Converging to a non-lytic mechanism of action. Cell Mol Life Sci 763, 23172330 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    van der Weerden, N. L., Bleackley, M. R., Anderson, M. A.: Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70, 35453570 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Matsuzaki, K.: Why and how are peptide-lipid interactions utilized for self-defence? Magainins and tachyplesins as archetypes. Biochem Soc Trans 29, 598601 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 98.

    Dubovskiy, I. M., Whitten, M. M. A., Kryukov, V. Y., Yaroslavtseva, O. N., Grizanova, E. V., Greig, C.: More than a colour change: Insect melanism, disease resistance and fecundity. Proc R Soc B-Biol Sci 280, 110 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Solano, F.: Melanins: Skin pigments and much more-types, structural models, biological functions, and formation routes. New J Sci 2014, 128 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 100.

    Sugumaran, M., Barek, H.: Critical analysis of the melanogenic pathway in insects and higher animals. Int J Mol Sci 17, 17101753 (2016).

  • 101.

    Tokura, A., Fu, G. S., Sakamoto, M., Endo, H., Tanaka, S., Kikuta, S., Tabunoki, H., Sato, R.: Factors functioning in nodule melanization of insects and their mechanisms of accumulation in nodules. J Insect Physiol 60, 4049 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Grizanova, E. V., Dubovskiy, I. M., Whitten, M. M., Glupov, V. V.: Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J Invertebr Pathol 119, 4046 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Vallet-Gely, I., Lemaitre, B., Boccard, F.: Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6, 302313 (2008).

  • 104.

    Altincicek, B., Linder, M., Linder, D., Preissner, K. T., Vilcinskas, A.: Microbial metalloproteinases mediate sensing of invadin g pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 75, 175183 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Griesch, J., Wedde, M., Vilcinskas, A.: Recognition and regulation of metalloproteinase activity in the haemolymph of Galleria mellonella: A new pathway mediating induction of humoral immune responses. Insect Biochem Mol 30, 461472 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 106.

    Yang, J., Yang, Y., Wu, W.M., Zhao, J., Jiang, L.: Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48, 1377613784 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Bombelli, P., Howe, C. J., Bertocchini, F.: Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27, 292293 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    Dickman, A.: Studies on the waxmoth Galleria mellonella, with particular reference to the digestion of wax by the larvae. J Cell Compar Physl 3, 223246 (1933).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 109.

    Lin, S. J., Schranz, J., Teutsch, S. M.: Aspergillosis case-fatality rate: Systematic review of the literature. Clin Infect Dis 32, 358366 (2001).

  • 110.

    Pfaller, M. A.: Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am J Med 125, 313 (2012).

  • 111.

    Zirkel, J., Klinker, H., Kuhn, A., Abele-Horn, M., Tappe, D., Turnwald, D., Einsele, H., Heinz, W. J.: Epidemiology of Candida blood stream infections in patients with hematological malignancies or solid tumors. Med Mycol 50, 5055 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 112.

    Cotter, G., Doyle, S., Kavanagh, K.: Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27, 163169 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 113.

    Thomaz, L., Garcia-Rodas, R., Guimaraes, A. J., Taborda, C. P., Zaragoza, O., Nosanchuk, J. D.: Galleria mellonella as a model host to study Paracoccidioides lutzii and Histoplasma capsulatum. Virulence 4, 139146 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 114.

    Chadwick, J. S., Caldwell, S. S., Chadwick, P.: Adherence patterns and virulence for Galleria mellonella larvae of isolates of Serratia marcescens. J Invertebr Pathol 55, 133134 (1990).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 115.

    Hornsey, M., Wareham, D. W.: In vivo efficacy of glycopeptide-colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 55, 35343537 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 116.

    Jander, G., Rahme, L. G., Ausubel, F. M.: Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182, 38433845 (2000).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 117.

    Michaux, C., Sanguinetti, M., Reffuveille, F., Auffray, Y., Posteraro, B., Gilmore, M. S., Hartke, A., Giard, J. C.: SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 79, 26382645 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 118.

    Miyata, S., Casey, M., Frank, D.W., Ausubel, F. M., Drenkard, E.: Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71, 24042413 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 119.

    Thomas, R. J., Hamblin, K. A., Armstrong, S. J., Müller, C. M., Bokori-Brown, M., Goldman, S., Atkins, H. S., Titball, R. W.: Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. Int J Antimicrob 41, 330336 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 120.

    Gomez-Lopez, A., Forastiero, A., Cendejas-Bueno, E., Gregson, L., Mellado, E., Howard, S. J., Livermore, J. L., Hope, W. W., Cuenca-Estrella, M.: An invertebrate model to evaluate virulence in Aspergillus fumigatus: The role of azole resistance. Med Mycol 52, 311319 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 121.

    Maurer, E., Browne, N., Surlis, C., Jukic, E., Moser, P., Kavanagh, K., Lass-Flörl, C., Binder, U.: Galleria mellonella as a host model to study Aspergillus terreus virulence and amphotericin B resistance. Virulence 6, 591598 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 122.

    Mowlds, P., Kavanagh, K.: Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165, 512 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 123.

    Mylonakis, E., Moreno, R., El Khoury, J. B., Idnurm, A., Heitman, J., Calderwood, S. B., Ausubel, F. M., Diener, A.: Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73, 38423850 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 124.

    Hood, W. M., Horton, P. M., Mccreadie, J. W.: Field evaluation of the red imported fire ant (Hymenoptera: Formicidae) for the control of wax moths (Lepidoptera: Pyralidae) in stored honeybee comb. J Agric Urban Entomol 20, 93103 (2003).

    • Search Google Scholar
    • Export Citation
  • 125.

    Waterhouse, D. F.: Axenic culture of wax moths for digestion studies. Ann N Y Acad Sci 77, 283289 (1959).

  • 126.

    Haydak, M. H.: Is wax a necessary constituent of the diet of wax moth larvae. Ann Entomol Soc Am 29, 581588 (1936).

  • 127.

    Bronskill, J. F.: A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J Lepid Soc 15, 102104 (1961).

    • Search Google Scholar
    • Export Citation
  • 128.

    Binder, U., Maurer, U., Lass-Flörl, C.: Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Boil 120, 288295 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 129.

    Giannouli, M., Palatucci, A. T., Rubino, V., Ruggiero, G., Romano, M., Triassi, M., Ricci, V., Zarrilli, R.: Use of larvae of the wax moth Galleria mellonella as an in vivo model to study the virulence of Helicobacter pylori. BMC Microbiol 14, 110 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Kloezen, W., van Helvert-van Poppel, M., Fahal, A. H., van de Sande, W. W. J.: A Madurella mycetomatis grain model in Galleria mellonella larvae. PLoS Neglect Trop Dis 9, e0003926 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 131.

    Loh, J. M. S., Adenwalla, N., Wiles, S., Proft, T.: Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 4, 419428 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 132.

    Olsen, R. J., Watkins, M. E., Cantu, C. C., Beres, S. B., Musser, J. M.: Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2, 111119 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 133.

    Ortiz-Urquiza, A., Fan, Y., Garrett, T., Keyhani, N. O.: Growth substrates and caleosin-mediated functions affect conidial virulence in the insect pathogenic fungus Beauveria bassiana. Microbiology 162, 19131921 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 134.

    Smoot, L. M., Smoot, J. C., Graham, M. R., Somerville, G. A., Sturdevant, D. E., Migliaccio, C. A. L.: Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 98, 1041610421 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 135.

    Tomiotto-Pellissier, F., Cataneo, A. H., Orsini, T. M., Thomazelli, A. P., Dalevedo, G. A., de Oliveira, A. G., Panagio, L. A., Costa, I. N., Conchon-Costa, I., Pavanelli, W. R., Almeida, R. S.: Galleria mellonella hemocytes: A novel phagocytic assay for Leishmania (Viannia) braziliensis. J Microbiol Method 131, 4550 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 136.

    Scully, L. R., Bidochka, M. J.: Serial passage of the opportunistic pathogen Aspergillus flavus through an insect host yields decreased saprobic capacity. Can J Microbiol 51, 185189 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 137.

    Fedhila, S., Buisson, C., Dussurget, O., Serror, P., Glomski, I. J., Liehl, P.: Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol 103, 2429 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Banville, N., Browne, N., Kavanagh, K.: Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence 3, 497503 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Fallon, J. P., Troy, N., Kavanagh, K.: Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2, 413421 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2020 0 50 28
Jun 2020 0 72 18
Jul 2020 67 17 9
Aug 2020 124 0 0
Sep 2020 67 2 1
Oct 2020 61 0 0
Nov 2020 0 0 0